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We study the linear stability of the flow of a viscous electrically conducting capillary8

fluid on a planar fixed plate in the presence of gravity and a uniform magnetic field,9

assuming that the plate is either a perfect electrical insulator or a perfect conductor.10

We first confirm that the Squire transformation for magnetohydrodynamics is11

compatible with the stress and insulating boundary conditions at the free surface but12

argue that unless the flow is driven at fixed Galilei and capillary numbers, respectively13

parameterizing gravity and surface tension, the critical mode is not necessarily14

two-dimensional. We then investigate numerically how a flow-normal magnetic15

field and the associated Hartmann steady state affect the soft and hard instability16

modes of free-surface flow, working in the low-magnetic-Prandtl-number regime of17

conducting laboratory fluids (Pm � 10−4). Because it is a critical-layer instability18

(moderately modified by the presence of the free surface), the hard mode exhibits19

similar behaviour as the even unstable mode in channel Hartmann flow, in terms20

of both the weak influence of Pm on its neutral-stability curve and the dependence21

of its critical Reynolds number Rec on the Hartmann number Ha . In contrast,22

the structure of the soft mode’s growth-rate contours in the (Re, α) plane, where23

α is the wavenumber, differs markedly between problems with small, but non-zero,24

Pm and their counterparts in the inductionless limit, Pm ↘ 0. As derived from25

large-wavelength approximations and confirmed numerically, the soft mode’s critical26

Reynolds number grows exponentially with Ha in inductionless problems. However,27

when Pm is non-zero the Lorentz force originating from the steady-state current28

leads to a modification of Rec(Ha) to either a sub-linearly increasing or a decreasing29

function of Ha , respectively for problems with insulating or perfectly conducting30

walls. In insulating-wall problems we also observe pairs of counter-propagating31

Alfvén waves, the upstream-propagating wave undergoing an instability driven by32

energy transferred from the steady-state shear to both of the velocity and magnetic33

degrees of freedom. Movies are available with the online version of the paper.34

1. Introduction35

Free-surface shear magnetohydrodynamic (MHD) flows arise in a variety of36

industrial and astrophysical contexts, including liquid-metal diverters in fusion37

reactors (Abdou et al. 2001; Bühler 2007), liquid-metal forced-flow targets (Shannon38
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et al. 1998), plasma oceans on white dwarfs and neutron stars (Bildsten & Cutler39

1995; Alexakis et al. 2004) and accretion disks around stellar remnants (Rüdiger et al.40

1999; Balbus & Henri 2007). Flows of this type typically take place at high Reynolds41

number Re � 104 and within strong background magnetic fields (Ha � 102, where Ha42

is the Hartmann number). Broadly speaking, one is interested in characterizing their43

stability properties because of either engineering requirements (e.g. in a fusion-reactor44

diverter) or the possibility of the involvement of a free-surface instability in the45

observed phenomena (such as classical novae and neutron star X-ray bursts).46

When the magnetic Prandtl number Pm of the working fluid is small, the effect47

of an external magnetic field is known to be stabilizing and weakly dependent on48

Pm in a variety of flow configurations (see Müller & Bühler 2001 and the references49

therein). In particular, Takashima (1996) has numerically studied the stability of plane50

Poiseuille flow modified by a flow-normal magnetic field, hereafter called ‘channel51

Hartmann flow’, under insulating boundary conditions and has determined that52

the critical Reynolds number Rec for instability increases monotonically with the53

Hartmann number. Moreover, for Pm � 10−4 (an interval encompassing all known54

conducting laboratory fluids) Rec was found to experience a mild, O(10−3), decrease55

compared to its value in the inductionless limit Pm ↘ 0, where the magnetic field56

becomes a background variable decoupled from the flow. The free-surface version57

of the problem, hereafter referred to as ‘free-surface Hartmann flow’, has mainly58

been studied via weakly nonlinear analysis (Gordeev & Murzenko 1990; Korsunsky59

1999; Mukhopadhyay, Dandapat & Mukhopadhyay 2008) and using asymptotic60

approximations of the linearized stability equations for large-wavelength gravity waves61

(Hsieh 1965; Ladikov 1966; Gupta & Rai 1968) or gravity–capillary waves (Lu &62

Sarma 1967). However, to the best of our knowledge, the degree of applicability of63

the inductionless approximation has not been discussed in the context of free-surface64

MHD stability problems (cf. the closed-channel calculations of Takashima 1996).65

Making use of recently developed spectral Galerkin methods for Orr–Sommerfeld66

(OS) eigenvalue problems (Kirchner 2000; Melenk, Kirchner & Schwab 2000;67

Giannakis, Fischer & Rosner 2009), in the present work we pursue a temporal68

stability analysis for free-surface Hartmann flow at low (but non-zero) magnetic69

Prandtl numbers, assuming that the lower wall is either an insulator or a perfect70

electrical conductor. Our main result is that for large wavelengths (α � 1, where α is71

the modal wavenumber), the spectrum of free-surface Hartmann flow contains two72

types of normal modes, neither of which is present in channel problems and whose73

stability is affected strongly by the dynamical response of the magnetic field to the74

fluid (which vanishes in the inductionless limit), even in the Pm = O(10−5) regime of75

liquid metals.76

The first of these modes is related to the unstable gravity wave, oftentimes referred77

to as the ‘soft instability mode’, encountered in non-MHD parallel flow down an78

inclined plane (Yih 1963, 1969; Lam & Bayazitoglu 1986; Floryan, Davis & Kelly79

1987; Kelly et al. 1989). In inductionless problems, the gravity wave becomes stabilized80

when Ha is increased (Hsieh 1965; Gupta & Rai 1968), but in the strong-field limit81

its growth rate Γ does not follow the characteristic |Γ | ∝ Ha2 Lorentz damping82

of the shear modes in the spectrum. Instead, it transitions to an asymptotically83

neutral phase, where the Lorentz force nearly balances gravity, and the decay rate84

|Γ | ∝ Ha−2 decreases towards zero. In problems with non-zero, yet small, Pm , Lorentz85

forces originating from magnetic field perturbations are found to be sufficient to alter86

the near equilibrium attained in the inductionless limit, leading to high sensitivity of87

the mode’s stability contours in the (Re, α) plane to the magnetic Prandtl number.88
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Figure 1. Geometry of (a) free-surface and (b) channel Hartmann flow. The steady-state
velocity and induced magnetic field profiles are U (z) and B(z), respectively (see § 2.4). The y
axis is directed into the plane of the paper.

The second type of modes in question is travelling Alfvén waves, which we have89

only encountered in flows with an insulating lower wall. When the background fluid90

is at rest, these modes appear at sufficiently large Hartmann numbers as a pair of91

counter-propagating waves, whose phase speed and decay rate increase linearly with92

Ha . Their kinetic and magnetic energies are nearly equal, but in the large-wavelength93

cases studied here the majority of the magnetic energy is carried by the magnetic94

field penetrating into the region exterior to the fluid. When a steady-state flow is95

established, the upstream-propagating Alfvén mode becomes unstable due to positive96

Reynolds and Maxwell stresses as the Alfvén number Al is increased.97

Aside from instabilities associated with gravity and Alfvén waves, free-surface flow98

also exhibits an instability of the critical-layer type (modified by the presence of the99

free surface), called the ‘hard instability’ (Lin 1967; De Bruin 1974; Floryan et al.100

1987). Sharing a common origin with the even unstable mode in channel Hartmann101

flow (Lock 1955; Potter & Kutchey 1973; Takashima 1996), the critical parameters of102

the hard mode at small Pm are close to the corresponding ones in the inductionless103

limit. However, in light of the presence of gravity and Alfvén waves, our analysis104

suggests that the inductionless approximation must be used with caution when dealing105

with free-surface MHD.106

The plan of this paper is as follows. In § 2 we formulate the governing equations107

and boundary conditions of our stability problems and discuss the validity of the108

Squire transformation. In § 3 we derive an energy-conservation law for temporal109

normal modes in free-surface MHD. We present our results in § 4 and conclude in § 5.110

The Appendix contains a discussion of large-wavelength (α ↘ 0) perturbation theory.111

Movies illustrating the behaviour of the modal eigenvalues on the complex plane as112

Ha or Pm are varied are available with the online version of the paper.113

2. Problem formulation114

2.1. Geometrical configuration115

Using x, y and z to respectively denote the streamwise, spanwise and flow-normal116

coordinates, oftentimes collected in the position vector r := (x, y, z), and t to denote117

time, we consider the flow geometries shown in figure 1. In free-surface problems the118

lower planar surface z = −l is inclined at an angle θ with respect to the horizontal,119

and the upper fluid boundary has oscillation amplitude z = a(x, y, t), with a = 0 in120

the steady state. In channel problems the flow takes place between two fixed parallel121

plates located at z = ± l. In both cases, the working fluid is incompressible and122
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has density ρ, dynamic viscosity μ and electrical conductivity λ. Additionally, the123

free surface has surface tension σ and is also acted upon by a gravitational field124

g := g(sin(θ)x − cos(θ)z). The fixed plates are treated as either electrical insulators or125

perfect electrical conductors.126

For future convenience we introduce the function A(r, t) := z − a(x, y, t), which127

vanishes on the free surface and leads, through its gradient, to the expression128

n := ∇A/‖∇A‖ = (−∂xa, −∂ya, 1) + O(a2) (2.1)

for the free-surface outward unit normal (for our purposes it suffices to work at linear129

order in a). Moreover, we choose t (x) := (1, 0, ∂xa) and t (y) := (0, 1, ∂ya) as mutually130

orthogonal unit vectors tangent to the free surface (t (x) · n = t (y) · n = t (x) · t (y) = O(a2)).131

The divergence of n is equal to twice the mean surface curvature κ , for which we132

compute133

2κ = ∇ · n = −
(
∂2

x a + ∂2
y a

)
+ O(a2). (2.2)

2.2. Governing equations134

Our starting point is the equations for incompressible resistive MHD (e.g. Müller &135

Bühler 2001),136

∂tU + U · ∇U = −∇P′ + F + Re−1	U,

F := RmJ × B, J := Rm−1∇ × B = E + U × B,

∂tB + U · ∇B = B · ∇U + Rm−1	B,

∇ · U = 0, ∇ · B = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.3)

obeyed by the velocity field U(r, t), the pressure P′(r, t), the Lorentz force F(r, t),137

the current J(r, t) and the magnetic and electric fields in the interior of the fluid,138

respectively B(r, t) and E(r, t). Here velocity has been non-dimensionalized by139

its steady-state value at z =0, U∗, and the characteristic values for the remaining140

dynamical variables are P∗ := ρU 2
∗ , B∗ := (μ0ρ)1/2U∗, E∗ := U∗B∗ and J∗ := λE∗,141

where each symbol with the subscript * denotes the characteristic value for the142

corresponding variable in script type. Choosing l as the characteristic length (for143

both free-surface and channel problems), the resulting hydrodynamic and magnetic144

Reynolds numbers are Re := U∗l/ν and Rm := U∗l/η, where ν := μ/ρ and η := 1/(μ0λ)145

are the viscous and magnetic diffusivities. In the following, we frequently substitute146

for Rm using the magnetic Prandtl number Pm := ν/η = Rm/Re.147

We consider solutions of the form148

U(r, t) = U(z) + u(r, t), P′(r, t) = P ′(x, z) + p′(r, t),

B(r, t) = B(z) + b(r, t), J(r, t) = J(z) + j (r, t), E(r, t) = E(z) + e(r, t),

}
(2.4)

consisting of steady-state components and linear perturbations, respectively denoted149

by uppercase and lowercase symbols. The steady-state flow U(z) := (U (z), 0, 0) is150

assumed to be streamwise invariant and unidirectional and to take place within a151

uniform, externally applied magnetic field B′ := (B ′
x, B

′
y, B

′
z), which, for the time152

being, is allowed to be of arbitrary direction. The applied field permeates the fluid,153

and assuming its components perpendicular to U are non-zero, the associated induced154

current generates a secondary internal magnetic field I := (Ix(z), Iy(z), 0). Thus, in155

the interior of the fluid the steady-state magnetic field is B := B′ + I .156
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We remark that in free-surface problems the pressure field P′ includes a contribution157

from the gravitational potential, which will be set by the boundary conditions in § 2.3.158

Since both pressure and the gravitational potential affect the dynamics solely through159

their gradient, we have allowed P ′ to depend on the streamwise coordinate x (though160

in light of the streamwise invariance of the steady state that dependence can be at most161

linear). Moreover, the flow-normal component of the induced magnetic field has been162

set to zero in order to meet the divergence-free condition ∇· I = 0 (a constant non-zero163

Iz can be absorbed in B ′
z). We also note that with our choice of characteristic magnetic164

field, U and B are naturally additive. In particular, using B̂′ and B ′
∗ to respectively165

denote a unit vector in the direction of B′ and the magnitude of the dimensional166

external magnetic field, B′ can be expressed as B′ = B̂′/Al , where Al := U∗(μ0ρ)1/2/B ′
∗167

is the Alfvén number of the flow (for an overview of dimensionless groups in MHD,168

see Shercliff 1965). An alternative option for reduction to non-dimensional form,169

frequently encountered in the literature for Hartmann flow (e.g. Takashima 1996,170

1998; Müller & Bühler 2001; Bühler 2007), is to set B∗ = B ′
∗, in which case the171

resulting dimensionless magnetic field B̄ is related to ours via B̄ = Al B. Rather than172

using Al , in the ensuing analysis we mainly parameterize the background magnetic173

field strength by means of the Hartmann number Ha := B ′
∗l(λ/μ)1/2 = (ReRm)1/2/Al ,174

where Ha2 measures the ratio of Lorentz to viscous stresses.175

In problems with insulating boundaries a further dynamical variable is the magnetic176

field B′(r, t) := B′ + b′(r, t) in the region exterior to the fluid. As follows from177

Ampère’s law, the perturbation b′ is expressible as the gradient of the magnetic178

potential ψ(r, t), which, in light of the solenoidal condition ∇ · b′ = 0, obeys Laplace’s179

equation; i.e.180

b′ = −∇ψ, with 	ψ = 0. (2.5a, b)

The equations governing the steady state and the perturbations follow by181

substituting (2.4) into (2.3) and neglecting quadratic terms in the perturbed fields.182

Using D to denote differentiation with respect to z, the non-zero components of the183

time-independent equations read184

Re−1D2U + B ′
z DIx − ∂xP = 0, Rm−1D2Ix + B ′

zDU = 0, DP = 0, (2.6a–c)

B ′
zDIy = 0, D2Iy = 0, (2.6d, e)

where P (x, z) := P ′(x, z)+ B(z) · B(z)/2 is the total steady-state pressure, consisting of185

hydrodynamic, magnetic and (in free-surface problems) gravitational contributions.186

As for the perturbations, we obtain187

∂t u + U∂xu + uzDU x = −∇p′ + f + Re−1	u, (2.7a)

f := Rm( j × B + J × b), j = Rm−1∇ × b = e − Ubz y + u × B, (2.7b, c)

∂t b + U∂x b + uzDB = B · ∇u + bzDU x + Rm−1	b, (2.7d )

∇ · u = 0, ∇ · b = 0, (2.7e, f )

where f is the Lorentz force acting on the perturbed velocity field.188

From the linearized Ampère and Ohm laws (2.7c), one can make the heuristic189

estimate ‖b‖/‖u‖ = O((PmHa)1/2) (see Hunt 1966 for similar scaling arguments),190

where ‖ · ‖ denotes suitable norms for the velocity and magnetic field perturbations.191

This suggests that as Pm ↘ 0 with Re and Ha fixed, i.e. in the so-called inductionless192

limit (Müller & Bühler 2001), b is negligible, and as a consequence, electromagnetic193

forces only arise from currents generated by the perturbed electric field e and from194

currents induced by the perturbed fluid motions within the steady-state magnetic195
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field. Moreover, as follows from Faraday’s law, ∇ × e = −∂t b ≈ 0, the electric field196

e ≈ −Al−1∇φ can be determined from the gradient of a potential φ(r, t). These197

observations suggest that for sufficiently small Pm , (2.7 b–d, f) can be replaced by the198

approximate relations199

f = Ha2Re−1(e + u × B̂′) × B̂′, e = −∇φ, 	φ = B̂′ · ∇ × u, (2.8a–c)

where (2.8c) follows from ∇ · j ∝ ∇ · ∇ × b =0. If, in addition, the flow is two-200

dimensional (i.e. none of the dynamical variables depends on y; the y component of201

u and b is zero; and the only non-zero component of e and j may be spanwise),202

the perturbed electric field e = ey y ∝ ∂yφ = 0 vanishes (equivalently, φ becomes203

an unimportant constant), resulting in a significant reduction of the analytical and204

computational complexity of the stability problem. The fact that all known conducting205

laboratory fluids have small magnetic Prandtl numbers (Pm � 10−5) has led to a206

widespread adoption of the inductionless approximation (Hsieh 1965; Gupta & Rai207

1968; Gordeev & Murzenko 1990; Korsunsky 1999; Mukhopadhyay et al. 2008).208

However, the small-‖b‖ assumption is not guaranteed to hold a priori, and the full209

problem must be solved to confirm that the scheme is valid in the parameter regime210

of interest (Takashima 1996).211

2.3. Boundary conditions212

The governing equations presented in the preceding section must be solved subject to213

appropriate initial and boundary conditions. In the temporal stability analysis that214

follows, initial conditions, as well as periodic boundary conditions on the streamwise215

and spanwise domain boundaries, are implicitly assumed. However, care must be216

taken in the choice of boundary conditions on the non-periodic boundaries, as this217

has led to errors in the past (Lin 1967 and Potter & Kutchey 1973, as indicated by218

De Bruin 1974 and Takashima 1996, respectively).219

Let zw collectively denote the flow-normal wall coordinates. (In the dimensionless220

representation, zw := {−1} for free-surface problems and zw := {±1} for channel221

problems.) In insulating-wall problems we assume that no surface charges and surface222

currents are present at the fluid–wall interface. Then, in accordance with Maxwell’s223

equations and charge–current conservation (e.g. Shercliff 1965), we set224

B|z=zw
= B′|z=zw

, z · J|z=zw
= 0, (2.9)

which leads to the boundary conditions225

Ix(zw) = 0, Iy(zw) = 0 (2.10a, b)

and226

(b + ∇ψ)|z=zw
= 0, z · ∇ × b|z=zw

= (∂xby − ∂ybx)|z=zw
= 0, (2.11a, b)

respectively for the steady-state fields and the perturbations. If, on the other hand,227

the wall is perfectly conducting, the tangential electric field components are required228

to vanish at the boundary, and the wall-normal magnetic field z · B is set to the229

externally imposed value B ′
z, giving230

DIx(zw) = 0, DIy(zw) = 0 (2.12a, b)

and231

bz|z=zw
= 0, x · ∇ × b|z=zw

= (∂ybz − Dby)|z=zw
= 0,

y · ∇ × b|z=zw
= (Dbx − ∂xbz)|z=zw

= 0,

}
(2.13)
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where we have used (2.7c) to substitute for the electric field e in terms of b. Turning232

now to the free surface, we assume throughout that the exterior region z >a is233

electrically insulating. Then, on the basis of similar electrodynamic arguments as234

those used to write (2.9), we demand235

t (x) · (B − B′)|z=a = t (y) · (B − B′)|z=a = n · (B − B′)|z=a = 0, n · J|z=a = 0. (2.14)

In order to evaluate the expressions above for the perturbed quantities, we analytically236

continue the induced magnetic field I in the region 0 <z � a. A Taylor expansion to237

linear order in a then yields the boundary conditions238

Ix(0) = 0, Iy(0) = 0 (2.15a, b)

and239

(∂xψ + bx)|z=0 + DBx(0)∂xa = 0, (∂yψ + by)|z=0 + DBy(0)∂ya = 0,

(Dψ + bz)|z=0 = 0, (∂xby − ∂ybx)|z=0 + DBy(0)∂xa − DBx(0)∂ya = 0,

}
(2.16)

which now involve the free-surface amplitude (cf. (2.11)). The requirement that240

whenever present, the external magnetic field perturbations vanish at infinity241

completes the specification of boundary conditions for the magnetic field.242

Regarding the velocity field, we impose, as usual, no-slip conditions243

U (zw) = 0, u|z=zw
= 0, (2.17a, b)

at the solid walls, and consider the kinematics and stress balance to establish boundary244

conditions at the free surface (for a discussion on interfacial dynamics, see Batchelor245

1967). First, noting that the free surface is, by definition, a material surface, leads246

to the kinematic boundary condition, dA/dt := (∂t + U|z=a · ∇)A= 0, which, upon247

linearization, becomes248

∂ta + U (0)∂xa = uz|z=0. (2.18)

In order to formulate the stress conditions, we introduce the stress tensors in the fluid249

and exterior domains, whose components in the (x, y, z) coordinate system are given250

by251

Tij := −Pδij + BiBj + Re−1 Sij , T′
ij := −(Φ + PB ′)δij + B′

i B′
j , (2.19)

respectively. Here P := P′ + B · B/2 is the resultant of the hydrodynamic and252

magnetic pressures and the gravitational potential; Sij := ∂iUj + ∂j Ui are the253

components of the rate-of-strain tensor; PB ′(r, t) := B′ ·B′/2 is the external magnetic254

pressure; and Φ(r) := (−x sin θ + z cos θ)/Fr2 is the gravitational potential, expressed255

in terms of the Froude number Fr := U∗/(gl)1/2. Using We := ρlU 2
∗ /σ to denote the256

Weber number, the free-surface curvature κ (2.2), in conjunction with surface tension,257

introduces a discontinuity Σ := 2κ/We in the normal stress, such that258

nj (T′
ij − Tij )|z=a = Σni, (2.20)

where ni are the components of the normal vector n (2.1), and summation is assumed259

over repeated indices. Forming the contraction of (2.20) with the orthonormal vectors260

n, t (x) and t (y) then leads to three stress conditions that we enforce at the free surface,261

namely the normal-stress boundary condition262

ninj (T′
ij − Tij )|z=a = Σ (2.21)

and the shear-stress conditions263

t
(x)
i nj (T′

ij − Tij )|z=a = t
(y)
i nj (T′

ij − Tij )|z=a = 0. (2.22)
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Evaluating (2.21) and (2.22) to linear order in the perturbed quantities and eliminating264

b′
i |z=a using (2.16) yields265

P (x, 0) = − sin(θ)Fr−2x + B(0) · B(0)/2, DU (0) = 0 (2.23a, b)

and266

(p − pB − 2Re−1Duz )|z=0 = (cos(θ)Fr−2 + B(0) · DB(0))a

− 2Re−1DU (0)∂xa − We−1
(
∂2

xa + ∂2
y a

)
,

(∂xuz + Dux)|z=0 = −D2U (0)a, (∂yuz + Duy)|z=0 = 0,

⎫⎪⎬⎪⎭ (2.24)

where pB := B · b is the internal magnetic-pressure perturbation. We note that the267

pressure field P in (2.23a) has a non-zero gradient with respect to x because it includes268

a contribution from the gravitational force (in addition to the hydrodynamic and269

magnetic-pressure terms) by construction; in treatments in which P is considered as a270

pure hydrodynamic pressure (e.g. Yih 1969, chapter 7) ∂xP would vanish identically.271

Besides We and Fr , alternative dimensionless groups for the capillary and normal272

gravitational forces are the capillary number Ca := μU∗/σ = We/Re and the Galilei273

number Ga := gl3 cos θ/ν2 = Re2 cos(θ)/Fr2. As we will see in § 2.5, unlike We, Fr274

and θ , the parameters Ga and Ca are invariant under the Squire transformation from275

three-dimensional to two-dimensional normal modes, and for this reason we have276

opted to perform the calculations in § 4 in the latter representation.277

2.4. Steady-state configuration278

In the present linear-stability analysis we employ the physically motivated Hartmann279

velocity and magnetic field profiles, which are the solutions to (2.6a–c). (In280

anticipation of the Squire transformation in § 2.5, we do not explicitly consider281

the spanwise induced magnetic field Iy .) For convenience we make the substitutions282

Ix(z) = B ′
zRmB(z) = Pm1/2HzB(z) and, taking into account (2.6c), P = −Πx+P0, where283

Hz := (ReRm)1/2 B ′
z , Π and P0 are respectively a Hartmann number defined in terms284

of the flow-normal component of the applied magnetic field, the streamwise gradient285

of the pressure field P and an unimportant constant. Equations (2.6a, b) then become286

D2U + H 2
z DB + ReΠ = 0, D2B + DU = 0, (2.25)

the general solution of which can be expressed as287

U (z) = C0 + C1

sinh(Hzz)

Hz

+ C2

cosh(Hz) − cosh(Hzz)

cosh(Hz) − 1
, (2.26a)

B(z) = K0 + K1z + C1

1 − cosh(Hzz)

H 2
z

+ C2

sinh(Hzz) − sinh(Hz)z

Hz(cosh(Hz) − 1)
, (2.26b)

where C0, C1, C2, K0 and K1 are constants such that288

Π =
(
C2H

2
z coth(Hz/2) − H 2

z K1

)
/Re. (2.27)

We remark that the terms proportional to C1 correspond to antisymmetric velocity289

and symmetric magnetic field solutions with respect to z, whereas the constant C2290

gives rise to symmetric velocity and antisymmetric magnetic field profiles. Moreover,291

the term proportional to K1 in (2.26b) can be interpreted as the magnetic field due to292

a uniform current of magnitude K1/Rm , driven in the spanwise direction. For values293
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Figure 2. (a) Steady-state velocity and (b) magnetic field profile for Hartmann flow with
Hz ∈ {0, 10, 20}. In (b), the solid (dashed) lines correspond to insulating (perfectly conducting)
boundary conditions at z = −1.

of the Hartmann number approaching zero, (2.26) becomes294

U (z) = C0 + C1z + C2(1 − z2) + O
(
H 2

z

)
, (2.28a)

B(z) = K0 + K1z − C1z
2/2 − C2z(1 − z2)/3 + O

(
H 2

z

)
, (2.28b)

and (2.27) reduces to Π = 2C2/Re. As expected, in this non-MHD limit U is a295

quadratic function of z, and even though B(z) is non-zero, the streamwise induced296

field Ix = Pm1/2HzB vanishes.297

In both of the free-surface and channel problems considered here, the choice298

of velocity normalization (U (0) = 1) and boundary conditions ((2.17a) and (2.23b))299

implies that C0 = C1 = 0 and C2 = 1. Moreover, if the walls are insulating, the constants300

K0 and K1 vanish due to (2.10a) and (2.15a). In problems with perfectly conducting301

walls K0 is again set to zero, either because of (2.15a) or, in channel problems, by302

convention (a non-zero K0 can be absorbed in the applied magnetic field B ′
x). However,303

K1 = (sinh(Hz) − Hz cosh(Hz))/(Hz(cosh(Hz) − 1)) is in this case non-vanishing, due304

to (2.12a).305

Figure 2 illustrates the functional form of these two classes of velocity and magnetic306

field profiles for Hartmann numbers in the range 0–20. Compared to the parabolic307

profile in non-MHD flows, Hartmann velocity profiles are characterized by a flat core308

region and exponential boundary layers of thickness O(1/Hz) near the no-slip walls.309

Moreover, the mean steady-state velocity, given by310

〈U〉 :=

∫ 0

−1

dz U (z) =
cosh(Hz) − sinh(Hz)/Hz

cosh(Hz) − 1
, (2.29)

increases monotonically from its non-MHD (Hz = 0) value of 2/3 to unity as311

Hz → ∞. In problems with perfectly conducting walls, |B(z)| peaks at |z| =1, and312

its gradient, which is proportional to the spanwise induced current Jy =Rm−1
313

DIx = Hz(ReRm)−1/2DB , attains its maximum magnitude at z = 0, where |DB| = 1.314

Also, for large Hz the current is close to its maximal value throughout the core. On the315

other hand, in the insulating-wall case, the current distribution becomes concentrated316

over the Hartmann layer as Hz grows, with the magnetic-profile gradient reaching its317

maximum absolute value |DB(±1)| = (cosh(Hz) − sinh(Hz)/Hz)/(cosh(Hz) − 1) = O(1)318
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at the walls, while at the core, where |DB| = O(1/Hz), the current tends to an Hz-319

independent value.320

Before proceeding, it is worthwhile to note a prominent qualitative difference321

between MHD and non-MHD velocity profiles, which concerns the existence of322

inflection points. Because the non-MHD velocity profile (2.28a) is quadratic in z, it323

has constant second derivative. On the other hand, it is possible to show that for324

suitable choices of the constants C1 and C2 and for sufficiently large Hz, the MHD325

velocity profile (2.26a) possesses an inflection point, so that an inviscid instability can326

potentially exist. In all of the flows studied here, the choice of boundary conditions327

completely suppresses the antisymmetric component of U (C1 = 0) and eliminates328

the possibility of inflectional instabilities. However, one can imagine situations (e.g. a329

sheared free surface) in which the conditions for the inflection point to exist are330

satisfied. Whether the non-ideal MHD flow develops in practice an instability mode331

of inviscid origin would be an interesting topic to investigate in the future.332

2.5. Three-dimensional normal modes and the associated Squire transformation333

In the three-dimensional temporal-normal-mode analysis we work with the Ansatz334

u = Re((ûx(z), ûy(z), ûz(z))e
i(αx+βy)+γ t ), p = Re((p̂(z)ei(αx+βy)+γ t ),

b = Re((b̂x(z), b̂y(z), b̂z(z))e
i(αx+βy)+γ t ), ψ = Re(ψ̂(z)ei(αx+βy)+γ t ),

}
(2.30)

where p := p′ + B · b is the linear perturbation of the pressure field P; ûi , p̂, b̂i and335

ψ̂ are complex functions of z; α � 0 and β � 0 are respectively the streamwise and336

spanwise wavenumbers; and γ ∈ � is the complex growth rate. In channel problems337

with perfectly conducting walls ψ̂ is omitted, while in free-surface problems we also338

set339

a = Re(âei(αx+βy)+γ t ), (2.31)

where â ∈ � is the complex free-surface amplitude. In (2.30) and (2.31) we have340

adopted the convention used by Ho (1989), under which Re(γ ) =: Γ gives the modal341

growth rate, whereas C := −Im(γ )/(α2 + β2)1/2 is the phase velocity. The complex342

phase velocity c := iγ /(α2 + β2)1/2, where Re(c) = C and Im(c)(α2 + β2)1/2 = Γ is343

frequently employed in the literature (e.g. Yih 1963, 1969; Takashima 1996) in place344

of γ .345

Substituting (2.30) into (2.2b) and (2.7) leads to the set of coupled ordinary346

differential equations347

Λûx = iαp̂ − i(αBx + βBy)b̂x − BzDb̂x − D(Bx)b̂z + (DU )ûz, (2.32a)

Λûy = iβp̂ − i(αBx + βBy)b̂y − BzDb̂y − D(By)b̂z, (2.32b)

Λûz = Dp̂ − i(αBx + βBy)b̂z − BzDb̂z, (2.32c)

0 = i(αûx + βûy) + Dûz, (2.32d )

Λmb̂x = −i(αBx + βBy)ûx − BzDûx + (DBx)ûz − (DU )b̂z, (2.32e)

Λmb̂y = −i(αBx + βBy)ûy − BzDûy + (DBy)ûz, (2.32f )

Λmb̂z = −i(αBx + βBy)ûz − BzDûz, (2.32g)

0 = i(αb̂x + βb̂y) + Db̂z, (2.32h)

0 = D2ψ̂ − (α2 + β2)ψ̂, (2.32i )
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where Λ := (D2 − (α2 +β2))Re−1 − (γ + iαU ) and Λm := (D2 − (α2 +β2))Rm−1 −348

(γ + iαU ). Here, the velocity eigenfunctions are subject to the homogeneous boundary349

conditions350

ûx(zw) = ûy(zw) = ûz(zw) = 0 (2.33)

at the no-slip boundaries, which follow from (2.17b). Moreover, if the walls are351

insulating, (2.11) leads to352

b̂x(zw) + iαψ̂(zw) = 0, b̂y(zw) + iβψ̂(zw) = 0,

b̂z(zw) + Dψ̂(zw) = 0, αb̂y(zw) − βb̂x(zw) = 0,

}
(2.34)

while boundary conditions for the magnetic field eigenfunctions in conducting-wall353

problems are, in accordance with (2.13),354

Db̂x(zw) = Db̂y(zw) = b̂z(zw) = 0. (2.35)

At the free surface, the kinematic and stress conditions, respectively (2.18) and (2.24),355

yield356

ûz(0) − (γ + iαU (0))â = 0, (2.36a)

Dûx(0) + iαûz(0) + D2U (0)a = 0, Dûy(0) + iβûz(0) = 0, (2.36b, c)

0 = p̂(0) − 2Re−1Dûz(0) − (Bx(0)b̂x(0) + By(0)b̂y(0) + Bz(0)b̂z(0))

−
(

cos θ

Fr2
+

α2 + β2

We2
+ Bx(0)DBx(0) + By(0)DBy(0) − 2iα

Re
DU (0)

)
â, (2.36d )

while the insulating boundary conditions (2.16) become357

b̂x(0) + iαψ̂(0) + DBx(0)â = 0, b̂y(0) + iβψ̂(0) + DBy(0)â = 0, (2.37a, b)

b̂z(0) + Dψ̂(0) = 0, αb̂y(0) − βb̂x(0) + (αDBy(0) − βDBx(0))â = 0. (2.37c, d )

Equations (2.32), in conjunction with the prescribed boundary conditions (in358

channel problems these are (2.33) and either (2.34) or (2.35), while in free-surface359

problems the boundary conditions are (2.33), (2.36), (2.37) and either (2.34) or (2.35)),360

constitute a differential eigenvalue problem, which must be solved for the eigenvalue361

γ , the eigenfunctions ûi , p̂, b̂i and, where appropriate, ψ̂ and/or â. As with several362

other hydrodynamic stability problems, it is possible to derive a Squire transformation363

(Squire 1933), mapping each three-dimensional normal mode to a two-dimensional364

one (By = β = ûy = b̂y =0) with smaller or equal growth rate Re(γ ). In the free-surface365

MHD flows studied here the Squire-transformed variables are366

α̃ := (α2 + β2)1/2, γ̃ := α̃γ /α, (2.38a)

R̃e := αRe/α̃, P̃m = Pm, G̃a := Ga, C̃a := Ca, (2.38b)

Ũ := U, B̃x := (αBx + βBy)/α, B̃z := α̃Bz/α, (2.38c)

ũx := (αûx + βûy)/α̃, ũz := ûz, b̃x := (αb̂x + βb̂y)/α̃, b̃z = b̂z, (2.38d )

p̃ := α̃p̂/α, ã := αâ/α̃, ψ̃ := ψ̂, (2.38e)

where, for reasons that will become clear below, we have opted to express the367

transformations for Rm , Fr and We implicitly through the corresponding ones for368

Pm , Ga and Ca . It is well known (e.g. Stuart 1954; Lock 1955; Betchov & Criminale369

1967) that ũi , b̃i , p̃ and ψ̃ satisfy (2.32 a, c–e, g–i) with ûi �→ ũi , b̂i �→ b̃i , p̂ �→ p̃,370
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ψ̂ �→ ψ̃ , U �→ Ũ , Bi �→ B̃i , α �→ α̃, γ �→ γ̃ , Re �→ R̃e, Rm �→ R̃m := P̃mR̃e and,371

importantly, β �→ 0. Here we verify that the transformation is also compatible with the372

non-trivial boundary conditions in free-surface MHD but only if U meets the shear-373

free boundary condition (2.23b). Specifically, making suitable linear combinations374

of (2.36) and using (2.37d), it is possible to derive the relations375

ũz(0) − (γ̃ + iα̃Ũ (0))ã = 0, Dũx(0) + iα̃ũz(0) + D2Ũ (0)ã = 0, (2.39a, b)

0 = p̃(0) − 2R̃e−1Dũz(0) − (B̃x(0)b̃x(0) + B̃z(0)b̃z(0))

− (cos(θ̃ )F̃r−2 + α̃2W̃e−1 + B̃x(0)DB̃x(0) − 2i(R̃eα̃)−1DŨ (0))ã, (2.39c)

where F̃r := R̃eG̃a−1/2 and W̃e := C̃a/R̃e, while linear combinations of (2.37) lead to376

b̃x(0) + iα̃ψ̃(0) + DB̃x(0)ã = 0, b̃z(0) + Dψ̃(0) = 0. (2.40a, b)

Equations (2.39a,b) and (2.40a,b) are structurally similar to (2.36a,c) and (2.37a,c),377

respectively, and it is also straightforward to check that ũi and b̃i satisfy Squire-378

transformed versions of (2.33)–(2.35). On the other hand, a comparison immediately379

reveals that (2.36d) and (2.39c) are compatible only if DU (0) = 0. Thus, unlike380

channel problems, the validity of the transformation in free-surface flows depends on381

the functional form of the steady-state velocity.382

In plane Poiseuille flow, the correspondence between three- and two-dimensional383

modes implies that for the purpose of determining the minimum (critical) Reynolds384

number for instability it suffices to restrict attention to two-dimensional normal385

modes. That is it follows from the inequalities Re(γ̃ ) � Re(γ ) and R̃e � Re, which386

are a consequence of (2.38a,b), that to each unstable three-dimensional mode there387

corresponds a less or equally stable two-dimensional one at smaller or equal Reynolds388

number. However, in the multiple-parameter problems studied here the question of389

whether or not the critical mode is two-dimensional depends on the path followed390

in parameter space as Re is increased. In particular, if the process of increasing the391

Reynolds number modifies any of the flow parameters that are unchanged by the392

Squire transformation, the critical two-dimensional mode is not guaranteed to be of393

vanishing spanwise wavenumber.394

The latter observation has been made by Hunt (1966) for channel MHD flows under395

purely streamwise applied magnetic fields (By = Bz =0), where, according to (2.38c), Bx396

and, equivalently, the Alfvén number Al = 1/Bx are unchanged by the transformation.397

If Al and Pm are held fixed as the Reynolds number of the three-dimensional problem398

is increased, then indeed the first mode that becomes unstable has β =0. However,399

if one requires the channel width, the fluid’s material properties and the external400

magnetic field strength all to remain fixed while the flow speed is increased (as was401

assumed by Hunt), then as Re grows Al necessarily increases as well, and three-402

dimensional modes may become unstable first.403

In the problems with flow-normal external magnetic field (B ′
x =By = 0) studied404

here, (2.38b,c) implies that the Hartmann number H̃a := P̃m1/2R̃eB̃z = Ha and405

the induced magnetic field profile B̃ := B̃x/(P̃m1/2H̃a) = B of the two-dimensional406

flow are the same as in the three-dimensional case. Since the Hartmann number407

is independent of the characteristic velocity U∗, this in turn indicates that when408

channel Hartmann flow is driven at progressively higher speeds with all geometrical409

and material parameters held fixed (as can be accomplished by means of a pump410

generating the streamwise pressure gradient Π (2.27)), the critical mode has purely411
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streamwise wave vector. In free-surface problems, (2.38b) necessitates that Ga and Ca412

are additionally constrained, but this cannot be accomplished simply by varying U∗413

with all other aspects of the problem fixed. This is because (i) the capillary number414

Ca directly depends on U∗, and (ii) the boundary condition (2.23a), in conjunction415

with (2.27), introduces the parameter interdependence416

Re = Ga tan(θ) tanh(Ha/2)/Ha or Re = Ga tan(θ)(sech(Ha) −1)/Ha2,

(2.41a, b)

valid respectively for problems with insulating and perfectly conducting walls. In the417

expressions above only Re depends on U∗, indicating that the steady-state velocity418

cannot be changed without modifying at least some of the remaining properties of the419

flow. An option compatible with (2.38) would be to fix U∗ and vary Re by changing420

the fluid thickness l, the inclination angle θ and the external magnetic field Bz in a421

manner that Ga and Ha remain constant.422

2.6. Two-dimensional normal modes423

In the two-dimensional normal-mode formulation, where β , ûy , b̂y and By are all424

set to zero, the divergence-free conditions (2.32 d, h) can be used to eliminate the425

streamwise velocity and magnetic field eigenfunctions, giving426

u(r, t) = Re((iDû(z)/α, 0, û(z))eiαx+γ t ), b(r, t) = Re((iDb̂(z)/α, 0, b̂(z))eiαx+γ t )

(2.42)

for the perturbed velocity and magnetic fields, where we have dropped the z subscript427

from ûz and b̂z for notational clarity. Substituting (2.42) into (2.32 a, c, g) and428

eliminating the pressure eigenfunction then leads to the coupled OS and induction429

equations (e.g. Betchov & Criminale 1967; Müller & Bühler 2001),430

Re−1(D2 − α2)2û − (γ + iαU )(D2 − α2)û + iα(D2U )û

+ (iαBx + BzD)(D2 − α2)b̂ − iα(D2Bx)b̂ = 0 (2.43a)

and431

Rm−1(D2 − α2)b̂ − (γ + iαU )b̂ + (iαBx + BzD)û = 0, (2.43b)

respectively.432

Whenever applicable, we write433

b′ = Re((iDb̂′(z)/α, 0, b̂′(z))eiαx+γ t ) = −Re(iαψ̂(z), 0, Dψ̂(z)eiαx+γ t )) (2.44)

for the external magnetic field perturbation. Laplace’s equation (2.32i) for the magnetic434

potential then becomes (D2 −α2)ψ̂ = 0, which, in conjunction with the condition that435

ψ̂ vanishes at infinity, has the closed-form solutions436

ψ̂(z) =

{
ψ̂(0)e−αz, z > 0,

ψ̂(−1)eα(z+1), z < −1,
ψ̂(z) =

{
ψ̂(1)e−α(z−1), z > 1,

ψ̂(−1)eα(z+1), z < −1,
(2.45a, b)

respectively for free-surface and channel problems with insulating walls. If the walls437

are perfectly conducting, only the expression valid for z > 0 is retained in free-surface438

problems, whereas in channel problems ψ̂ is dropped altogether from the formulation.439

In inductionless problems, (2.8) substituted into (2.7a) leads to the modified OS440

equation (Stuart 1954; Lock 1955)441

(D2 − α2)2û − (iαHx + HzD)2û − Re(γ + iαU )(D2 − α2)û + iαRe(D2U )û = 0, (2.46)
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where Hx := (ReRm)1/2Bx . Equation (2.46), which replaces the coupled system (2.43),442

can also be obtained by letting Pm ↘ 0 with Hx and Hz fixed. In that limit, the443

induced magnetic field Ix vanishes (see § 2.4), and (2.43b) reduces to444

(iαBx + BzD)(D2 − α2)b̂ = −Rm(iαBx + BzD)û, (2.47)

leading to (2.46) upon substitution in (2.43a).445

As for the boundary conditions, substituting for ûx , b̂x and p̂ in the no-slip,446

kinematic and stress conditions (2.33) and (2.36) by means of (2.32 c, d, h), leads to447

û(zw) = Dû(zw) = 0, (2.48a)

û(0) − (γ + iαU (0))â = 0, D2û(0) + α2û(0) − iαD2U (0)â = 0 (2.48b, c)

and448

(((D2 −3α2)D−Re(γ +iαU )D+iαRe(DU ))û)|z=0 +Re(Bz (D
2 −α2)− iα(DBx ))b̂|z=0

− α2
(
GaRe−1 + α2Ca−1 + ReBx (0)DBx (0) − 2iαDU (0)

)
â = 0. (2.48d )

Moreover, using (2.45) to eliminate ψ̂ , the magnetic field boundary conditions at449

insulating boundaries, (2.34) and (2.37), yield450

Db̂(±1) ± αb̂(±1) = 0 (2.49)

and451

Db̂(−1) − αb̂(−1) = 0, Db̂(0) + αb̂(0) − iαDBx(0)â = 0, (2.50a, b)

respectively for channel and free-surface problems. If, on the other hand, the walls452

are perfectly conducting (2.35) leads to453

b̂(zw) = 0. (2.51)

In inductionless problems, the boundary conditions for b̂ are not required, and (2.48d)454

becomes455

((D2 − 3α2)D − Re(γ + iαU )D + iαRe(DU ) − Hz (iαHx + HzD))û |z=0

− α2
(
GaRe−1 + α2Ca−1 − 2iαDU (0)

)
â = 0. (2.52)

To summarize, in both of the free-surface and channel MHD stability problems456

studied here, the steady-state configuration and the governing differential equations457

are respectively (2.26) (with z restricted to the appropriate interval and the integration458

constants set according to the wall conductivity) and (2.43). The boundary conditions459

for free-surface problems with an insulating wall are (2.48) and (2.50), while if the460

wall is perfectly conducting (2.51) is enforced in place of (2.50a). In channel problems461

the boundary conditions are (2.48a) and either (2.49) or (2.51). In inductionless462

problems, the governing equations are replaced by (2.46); the magnetic field boundary463

conditions (2.49)–(2.51) are omitted; and (2.48d) is replaced by (2.52).464

3. Energy balance465

3.1. Formulation for two-dimensional perturbations466

Following the analysis by Stuart (1954) and Kelly et al. (1989) (for similar467

considerations applied to shear-driven problems, see Smith & Davis 1982), respectively468

for channel flows with homogeneous boundary conditions and non-MHD free-surface469
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flows, we now derive energy-balance relations for normal modes in free-surface470

MHD with insulating boundary conditions. The resulting formulation will contribute471

towards a physical interpretation of the results presented in § 4 and can also provide472

consistency checks for numerical schemes (Smith & Davis 1982; Giannakis et al. 2009).473

In order to keep complexity at a minimum, we restrict attention to two-dimensional474

normal modes, setting the spanwise wavenumber β equal to zero and assigning an475

arbitrary length Ly to the size of the domain in the y direction. Moreover, we assume476

that the steady-state velocity and magnetic field profiles satisfy (2.25) subject to the477

boundary conditions (2.10a), (2.15a), (2.17a) and (2.23b). Similar energy equations478

apply for the other types of stability problems studied here, but in the interest of479

brevity, we do not explicitly consider their derivation. In this section we work in480

Cartesian tensor notation, using ui , bi and b′
i to respectively denote the components481

of u, b and b′ in the (x, y, z) coordinate system and εijk to denote the Levi–Civita482

symbol. Summation is assumed over repeated tensorial indices.483

First, we define the kinetic energy density and the internal magnetic energy density484

of the perturbations as Eu := uiui/2 and Eb := bibi/2, respectively. The integrals of485

these quantities over the unperturbed fluid domain Ω := (0, Lx) × (0, Ly) × (−1, 0),486

where Lx := 2π/α is the modal wavelength, then yield the total kinetic and internal487

magnetic energies488

Eu :=

∫
Ω

dV Eu, Eb :=

∫
Ω

dV Eb, (3.1a, b)

where dV := dx dy dz. Similarly, the magnetic energy density in the exterior of the489

fluid, given by Eb′ := b′
ib

′
i/2, leads to the external magnetic energies490

Eb′− :=

∫
Ω−

dV Eb′, Eb′+ :=

∫
Ω+

dV Eb′, Eb′ := Eb′− + Eb′+, (3.2)

where Ω− := (0, Lx) × (0, Ly) × (−∞, −1) and Ω+ := (0, Lx) × (0, Ly) × (0, ∞). The491

two forms of energy associated with the free surface are the potential energy Ep and492

the surface-tension energy Eσ , defined in terms of the corresponding densities (per493

unit surface) as494

Ep :=

∫
∂Ωs

dS Ep, Eσ :=

∫
∂Ωs

dS Eσ , (3.3)

where ∂Ωs := (0, Lx) × (0, Ly), dS := dx dy and495

Ep :=
(
cos(θ)Fr−2 + Bx(0)DBx(0)

)
a2/2, Eσ := (∂xa)2/(2We). (3.4)

We remark that Ep is equal to the work needed to displace the free surface from z =0496

to z = a(x, y, t) in the presence of the gravitational field and the flow-normal gradient497

of the steady-state magnetic pressure. Also, noting that (1 + (∂xa)2)1/2 dx dy = (1 +498

(∂xa)2/2 + O(a4)) dx dy is the area element on the free surface, Eσ is equal to the499

work done against surface tension in order to increase the free-surface area from its500

unperturbed value to that corresponding to the amplitude a(x, y, t). The potential501

and surface-tension energies make up the total free-surface energy502

Ea := Ep + Eσ . (3.5)

The time evolution of the energy in the fluid domain follows from the linearized503

equations (2.7), which, upon elimination of the Lorentz force f in (2.7a) by means504
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of (2.7b), read505

∂tui = −Uj ∂jui − uj ∂jUi + bj ∂jBi + Re−1	ui + Bj ∂j bi − ∂i p, (3.6a)

ji = Rm−1εijk∂jbk = ei + εijkUjbk + εijkujBk, (3.6b)

∂tbi = −Uj ∂jbi + bj ∂jUi − uj ∂jBi + Rm−1	bi + Bj ∂jui, (3.6c)

∂iui = 0, ∂ibi = 0. (3.6d, e)

In particular, forming the contraction of (3.6a) with ui and the contraction of (3.6b)506

with bi , and adding the results together, leads to the energy equation507

∂t (Eu + Eb) = gR + gM + gJ + gν + gη + ∂i

(
−q

(E)
i + q

(em)
i + q

(mech)
i

)
, (3.7)

where508

gR := −uiuj∂jUi, gM := bibj∂jUi, gJ := uiuj (∂jBi − ∂iBj ), (3.8a–c)

gν := −sij sij /(2Re), gη := −Rmji ji , (3.8d, e)

with sij := ∂iuj + ∂jui and509

q
(E)
i := Ui(Eu + Eb), q

(em)
i := εijk bj (ek + εklmUl bm), (3.9a, b)

q
(mech)
i := uj (−(p − pb)δij + Re−1sij ), pb := Bibi . (3.9c, d )

We remark that in deriving (3.7) we have used the divergence-free conditions (2.7e, f)510

(as well as the corresponding ones for Ui and Bi) and the relations511

ui	ui = ∂i(ujsij ) − sij sij /2, Rm−1bi	bi = ∂i(εijkbj jk) − Rmjiji . (3.10)

In a similar manner, Faraday’s law ∂tb
′
i = −εijk∂j e

′
k , governing b′

i and the external512

electric field e′
i , in conjunction with the curl-free property εijk∂jb

′
k =0 (this holds513

due to the insulating nature of the medium surrounding the fluid) yields the energy514

equation515

∂tEb′ = εijk∂i(b
′
j e

′
k) (3.11)

for the external magnetic energy density. As for the surface energies (3.4), multiplying516

the kinematic boundary condition (2.18) by the free-surface amplitude a and suitable517

constants leads to the rate equations518

∂tEg = −U (0) ∂xEg +
(
cos(θ)Fr−2 + Bx(0)DBx(0)

)
auz|z=0, (3.12a)

∂tEσ = −U (0) ∂xEσ + (∂x(uz|z=0 ∂xa) − uz|z=0 ∂2
x a)/We. (3.12b)

Each of the terms on the right-hand side of (3.7) has a physical interpretation. First,519

the source terms gR and gM are respectively the energy transfer rates between the basic520

flow and the velocity and magnetic field perturbations, i.e. the energy transfer rates521

associated with the Reynolds and Maxwell stresses. Physically, gR is an outcome of522

the mechanical exchange of energy occurring as the velocity perturbations transport523

mass within the non-uniform steady-state velocity field. In contrast, the energy transfer524

mechanism corresponding to gM is electromagnetic in nature. Its origin lies in the525

stretching/shrinking of the perturbed magnetic field b by the basic flow. Also, noting526

that ∂jBi − ∂iBj = RmεjikJk , where Jk := Rm−1εklm∂lBm is the steady-state current, gJ527

is interpreted as the rate of work done on the fluid by the Lorentz force associated528

with the basic current, the so-called current interaction, while gν and gη are the529

viscous and resistive dissipation terms. Among the fluxes {q (E)
i , q

(em)
i , q

(mech)
i }, q

(E)
i is530

the perturbation energy transported by the basic flow; q
(em)
i is the electromagnetic531
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energy flux, evaluated in the rest frame of the unperturbed fluid (recall that in the532

non-relativistic limit the electric field perturbation in the rest frame of the unperturbed533

fluid is e + U × b); and q
(mech)
i is the momentum flux due to mechanical stresses acting534

on the fluid.535

We derive a global version of the above energy equations by integrating (3.7) over536

Ω and making use of the divergence theorem to reduce the volume integrals of537

q
(E)
i , q

(em)
i and q

(mech)
i to surface integrals. To begin, a consequence of the assumed538

periodicity in x is that
∫

Ω
dV ∂iq

(E)
i vanishes and that the surface energies (3.3) obey539

∂tEp =

∫
∂Ωs

dS
(
cos(θ)Fr−2 + Bx(0)DBx(0)

)
auz|z=0, (3.13a)

∂tEσ = −
∫

∂Ωs

dS We−1∂2
x a uz|z=0. (3.13b)

Also, integrating (3.11) over Ω− ∪ Ω+, and using the magnetic field boundary540

conditions (2.11) and (2.16), leads to541

∂tEb′ = −
∫

Ω

dV ∂iq
(em)
i − DBx(0)

∫
∂Ωs

dS aey |z=0 − U (0)

∫
∂Ωs

dS (bxbz)|z=0, (3.14)

while the relation542

∂t (Ep + Eσ ) = −
∫

Ω

dV ∂iq
(mech)
i − D2U (0)

Re

∫
∂Ωs

dS aux |z=0 (3.15)

follows from the stress boundary conditions (2.24). Then, integrating (3.7), and543

eliminating q
(em)
i and q

(mech)
i by means of (3.14) and (3.15), we arrive at the conservation544

equation545

∂tE = GR + GM + GJ + Gν + Gη + Gaν + GaJ (3.16)

for the total energy E := Eu + Eb + Eb′ + Ep + Eσ . Here the volume terms546

GR :=

∫
Ω

dV gR, GM :=

∫
Ω

dV gM, GJ :=

∫
Ω

dV gJ ,

Gν :=

∫
Ω

dV gν, Gη :=

∫
Ω

dV gη

⎫⎪⎪⎬⎪⎪⎭ (3.17)

are energy transfer rates respectively associated with the Reynolds stress, Maxwell547

stress, current interaction, viscous dissipation and resistive dissipation. Moreover, the548

surface terms549

GaU := −D2U (0)

Re

∫
∂Ωs

dS aux |z=0, (3.18a)

GaJ := −RmJy(0)

∫
∂Ωs

dS a(jy − (Bxuz − Bzux))|z=0 (3.18b)

represent the energy transferred to the free surface by viscous and electromagnetic550

forces, respectively. In particular, noting that Bxuz − Bzux is the current induced by551

the velocity field perturbations within the steady-state magnetic field, the quantity552

jy − (Bxuz − Bzux) in (3.18b) can be interpreted as the current induced by the steady-553

state fluid motion within the perturbed magnetic field (Hunt 1966).554
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3.2. Energy balance for two-dimensional normal modes555

The results of the preceding section can be applied to the special case of the two-556

dimensional normal mode solutions. First, the expressions557

Eu = Le2Γ t

∫ 0

−1

dz Êu(z), Eb = Le2Γ t

∫ 0

−1

dz Êb(z) (3.19)

follow by substituting for ui and bi in (3.1) using (2.42), where L := LxLy/4α2 is a558

constant and559

Êu := |Dû|2 + α2|û|2, Êb := |Db̂|2 + α2|b̂|2 (3.20)

are the modal kinetic and magnetic energy densities, averaged over the streamwise560

and spanwise directions. The external magnetic energy E′
b (3.2) can be computed in561

terms of the internal magnetic field using the solution (2.45a) for ψ̂ to evaluate the562

integral over z and the insulating boundary conditions (2.34) and (2.37) to substitute563

for the magnetic potential at the fluid domain boundaries. Specifically, we have564

E′
b = Le2Γ t

(∫ −1

−∞
dz +

∫ ∞

0

dz

)
(|Db̂′(z)|2 + α2|b̂′(z)|2) = Le2Γ tα(|b̂(−1)|2 + |b̂(0)|2).

(3.21)
In addition, the normal-mode solution (2.31) (with β = 0) for the free-surface565

displacement in conjunction with (3.3) yields566

Ep = Le2Γ tα2
(
cos(θ)Fr−2 + Bx(0)DBx(0)

)
|â|2, Eσ = Le2Γ tα4We−1|â|2. (3.22)

We treat the source terms on the right-hand side of (3.16) in a similar manner. The567

volume terms (3.17) become568

GR = Le2Γ t

∫ 0

−1

dz ĝR(z), GM = Le2Γ t

∫ 0

−1

dz ĝM (z),

GJ = Le2Γ t

∫ 0

−1

dz ĝJ (z), Gν = Le2Γ t

∫ 0

−1

dz ĝν(z), Gη = Le2Γ t

∫ 0

−1

dz ĝη(z),

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.23)

where569

ĝR := 2α(DU )Im(û∗Dû), ĝM := −2α(DU )Im(b̂∗Db̂), (3.24a, b)

ĝJ := 2αDBx Im(û∗Db̂ − b̂∗Dû), (3.24c)

ĝν := −Re−1(|D2û|2 − 2α2Re(û∗D2û) + α4 |û|2), (3.24d )

ĝη := −Rm−1(|D2b̂|2 − 2α2Re(b̂∗D2b̂) + α4|b̂|2). (3.24e)

Moreover, the surface terms (3.18) equate to570

GaU = −Le2Γ t2αRe−1D2U (0) Im(âDû∗(0)), (3.25a)

GaJ = Le2Γ t2α(Jy(0)Im((D2b̂(0) − α2b̂(0))â∗)

− BzDBx(0)Im(âDû∗(0)) + αBx(0)DBx(0)Re(âû∗(0))). (3.25b)

Finally, noting that the energy growth rate of the normal-mode solutions (2.31)571

and (2.42) satisfies ∂tE = 2Γ E and inserting (3.24) and (3.25) into (3.16), we obtain572

Γ = ΓR + ΓM + ΓJ + Γη + Γν + ΓaU + ΓaJ , (3.26)

where Γ[·] := G[·]/2E.573
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Equation (3.26) expresses the modal growth rate as a sum of contributions574

from the various MHD energy generation and dissipation mechanisms. In the575

ensuing discussion, we oftentimes aggregate the terms on its right-hand side, writing576

Γ = Γmech + Γem, where577

Γmech := ΓR + ΓaU + ΓJ + Γν, Γem := ΓM + ΓaJ + Γη (3.27a, b)

represent the net mechanical and electromagnetic contributions to Γ , respectively.578

Moreover, we introduce normalized versions of the energy transfer densities (3.24),579

writing Γ̂ [·](z) := Lĝ[·](z)/(2E)|t=0 for each of the source terms in (3.24), which580

gives
∫ 0

−1
dz Γ̂ [·](z) = Γ[·]. We also note that the corresponding energy transfer581

decomposition for inductionless problems can be obtained from (3.26) by formally582

setting the magnetic field energies, Eb and E′
b, the Maxwell stress term ΓM and the583

magnetic field gradient DBx to zero and, as follows from (2.47), replacing (3.24e) with584

ĝη = −Re−1(H 2
z |Dû|2 + 2αHxHz Im(û∗Dû) + α2H 2

x |û|2). (3.28)

4. Results and discussion585

We now investigate the stability properties of the models established in § 2,586

restricting attention to two-dimensional problems with a purely flow-normal external587

magnetic field (i.e. Hx = 0 and Hz = Ha) and magnetic Prandtl number no greater588

than 10−4 (including the inductionless limit Pm ↘ 0). Albeit small, the chosen upper589

boundary for Pm encompasses all known laboratory and industrial fluids. Our focus590

will be on the stability of travelling gravity and Alfvén waves, neither of which are591

present in channel Hartmann flow. In addition, the behaviour of the hard instability592

mode, which is the free-surface analogue of the even unstable mode in channel593

problems (Takashima 1996), will be examined. All numerical work was carried out594

using a spectral Galerkin method for the coupled OS and induction equations for595

free-surface MHD (Giannakis et al. 2009).596

Following a review of non-MHD free-surface flow in § 4.1, we consider in § 4.2597

inductionless problems and then in § 4.3 flows at non-zero Pm . In the interest of598

commonality with the literature for channel Hartmann flow, we frequently use the599

complex phase velocity c := iγ /α = C + iΓ/α, where C and Γ are respectively600

the modal phase velocity and growth rate, in place of the complex growth rate γ .601

The complex phase velocity will also be employed whenever reference is made to602

neutral-stability curves in the (Re, α) plane. In particular, we consider these curves603

to be the loci Im(c(Re, α)) = 0, a definition that does not necessarily agree on the604

α = 0 axis with the equivalent one, Re(γ (Re, α)) = 0, in terms of γ (see § 4.3.1). We605

denote throughout the critical Reynolds number for the onset of instability and the606

wavenumber and phase velocity of the critical mode by Rec, αc and Cc, respectively.607

Motivated by the discussion of the Squire transformation in § 2.5, we have opted to608

perform our analysis using the parameter set {α, Re, Pm, Ha, Ga, Ca}, rather than,609

say, parameterizing gravity by means of the Froude number Fr and the inclination610

angle θ and surface tension by means of the Weber number We. In particular,611

all ensuing calculations in which Re is varied (namely eigenvalue contours in the612

(Re, α) plane and critical-Reynolds-number calculations) are performed at constant613

{Pm, Ha, Ga, Ca}, as under that condition the onset of instability is governed by two-614

dimensional (β = ûy = b̂y = 0) modes. Computing eigenvalue contours at constant615

Ha and, where applicable, Pm is also the conventional choice in the literature for616

channel Hartmann flow (e.g. Lock 1955; Potter & Kutchey 1973; Takashima 1996).617
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However, in free-surface flow these calculations are typically performed at fixed618

inclination angle (Yih 1963; Hsieh 1965; Lin 1967; Gupta & Rai 1968; Yih 1969;619

De Bruin 1974; Lam & Bayazitoglu 1986; Floryan et al. 1987; Kelly et al. 1989),620

rather than fixed Ga . Yet, as follows from (2.41), as long as ReHa/ tanh(Ha/2 ) � Ga621

or ReHa2/(sech(Ha) − 1) � Ga , respectively for insulating and conducting lower622

wall, θ remains small, which is the case for several of the calculations presented here.623

Among the various dimensionless groups associated with surface tension, our capillary624

number Ca is equivalent to the parameter S ′ = 3/(2Ca) employed by Yih (1963),625

whereas, for instance, Lu & Sarma (1967) and Kelly et al. (1989) use We, while Smith626

& Davis (1982), Lam & Bayazitoglu (1986) and Floryan et al. (1987) respectively use627

S = Re/Ca , St = 1/We = 1/(ReCa) and ζ = 31/3(Ga/ cos(θ))2/3 sin(θ)/(2Ca).628

Unless otherwise stated, we set Ga = 8.3 × 107, which for a typical liquid metal629

with kinematic viscosity ν = 3 × 10−7 m2 s−1 in a g = 9.81 m s−2 gravitational field630

corresponds to l3 cos(θ) � (0.01 m)3. Taking λ = 3×10−6 �−1 m−1 to be a characteristic631

value of the fluid’s electrical conductivity (Nornberg et al. 2008) then leads to the632

estimate tan(θ) � 5 × 10−7Re(B∗/1 kG)(l/1 cm) for the inclination angle (2.41a) in633

insulating-wall problems, expressed in terms of a dimensional applied magnetic field634

B∗ and fluid thickness l meeting the condition tanh(Ha/2) = tanh(B∗l(λ/μ)1/2/2) ≈ 1.635

Noting that with the above choices of μ and λ, together with l = 1 cm and B∗ = 1 kG,636

the Hartmann number is roughly 50 (i.e. tanh(Ha/2) ≈ 1), it follows that in flows with637

an insulating wall involving centimetre-thick liquid-metal films and kilogauss-sized638

magnetic fields (studied experimentally by Alpher et al. 1960; Ji et al. 2005; Nornberg639

et al. 2008), the inclination angle remains small (θ � 1◦) up to Reynolds numbers640

of order 104. On the other hand, flows with a perfectly conducting wall require641

substantially larger inclination angles in order to be driven under strong applied642

fields because, as follows from (2.41b), in this case tan(θ) increases exponentially with643

B∗ for Ha � 1. However, it is questionable whether this regime is practically realizable,644

given the magnitude of the induced current Jy (see § 2.4) and the associated heat load645

on the fluid.646

Capillary effects are of minor importance for the instabilities we wish to explore647

(cf. Lu & Sarma 1967, who studied MHD gravity–capillary waves), but we nominally648

work at Ca = 0.07, which is the capillary number computed for dynamic viscosity649

μ = 1.5 × 10−3 N s m−2 and surface-tension coefficient σ = 0.1 N m−1 (both of which650

are typical liquid-metal values), assuming a velocity scale U∗ = 4.7 m s−1.651

4.1. Non-MHD flow652

Our baseline scenario is non-MHD parallel flow down an inclined plane with the653

parabolic velocity profile U (z) = 1 − z2. As shown in the spectrum in figure 3654

and table 1, evaluated at Re = 7 × 105 and α = 2 × 10−3, the eigenvalues form655

the characteristic three-branch structure in the complex plane encountered in plane656

Poiseuille flow (Mack 1976; Dongarra, Straughan & Walker 1996; Kirchner 2000;657

Melenk et al. 2000), with the difference that because they lack reflection symmetry with658

respect to z, the modes do not arise as symmetric–antisymmetric pairs. Following659

standard nomenclature (Mack 1976), we label the branches A, P and S, where660

0 <Re(c) < 〈U〉 = 2/3 and 〈U〉 <Re(c) < 1, respectively for modes in the A and P661

families, while S modes have C = 〈U〉, asymptotically as Im(c) → −∞ (Grosch &662

Salwen 1964). Among the A, P and S modes, only the ones at the top end of the663

spectrum carry appreciable surface energy. For instance, in table 1, Ea/E drops from664

0.00652 for mode P1 to O(10−7) for mode S2.665
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Figure 3. Eigenvalues for non-MHD free-surface flow at Re = 7 × 105, α = 2 × 10−3,
Ga = 8.3 × 107 and Ca = 0.07, showing the A, P and S branches on the complex-c
plane. Mode F, represented by a boldface marker, is unstable and has growth rate
Γ = αIm(c) = 3.7447 × 10−5 and energy transfer rates (the terms on the right-hand side
of (3.26) with ΓM , ΓJ , Γη and ΓaJ set to zero) ΓR = −7.7875 × 10−6, Γν = −1.1048 × 10−4 and

ΓaU = 1.5572 × 10−4.

c Ea/E

1 F 1.019322365642126 × 100 + 1.872373565774912 × 10−2 i 3.81670 × 10−2

2 P1 9.430932551528158 × 10−1 − 5.660800610069469 × 10−2 i 6.52344 × 10−3

3 A1 1.280197187921976 × 10−1 − 7.844228782612407 × 10−2 i 1.61245 × 10−4

4 P2 8.676593690519436 × 10−1 − 1.322655312947944 × 10−1 i 6.09230 × 10−4

5 P3 7.920814474574365 × 10−1 − 2.078761371940656 × 10−1 i 1.14211 × 10−4

6 A2 3.862388506852979 × 10−1 − 2.079139567980078 × 10−1 i 1.41771 × 10−4

7 P4 7.161372374734705 × 10−1 − 2.819337921185398 × 10−1 i 2.31032 × 10−5

8 A3 5.621911688341056 × 10−1 − 2.845782600055865 × 10−1 i 3.99770 × 10−5

9 S1 6.724206086971892 × 10−1 − 3.536832210862633 × 10−1 i 3.85934 × 10−6

10 S2 6.706989371744410 × 10−1 − 4.693930705398125 × 10−1 i 1.01726 × 10−7

Table 1. Complex phase velocity c and free-surface energy Ea (normalized by the total modal
energy E = Eu + Ea) of the 10 least stable modes of the spectrum in figure 3. The modes are
tabulated in order of decreasing Im(c) and labelled Ai , Pi , Si , or F according to their family,
where i denotes the rank, again in order of decreasing Im(c), within a given family.

In addition to the above shear modes, the depicted free-surface spectrum contains666

an unstable surface mode, denoted by F, which propagates downstream with phase667

velocity greater than the steady-state velocity at the free surface (i.e. Re(c) > 1). This668

so-called soft instability is driven by viscous stresses acting on the free surface (Yih669

1963; Kelly et al. 1989). In the notation of § 3, the corresponding energy transfer rate670

ΓaU > |Γν + ΓR| to mode F exceeds the net rate of energy dissipated through viscous671

and Reynolds stresses (see also Kelly et al. 1989), resulting in a positive growth rate672

Γ = ΓaU + Γν + ΓR .673
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Figure 4. (a,b) Imaginary and (c,d ) real parts of the complex phase velocity c of the least stable
mode in the (Re, α) plane, computed at constant Galilei and capillary numbers Ga = 8.3×107

and Ca = 0.07, (a,b) for non-MHD free-surface flow and (c,d ) inductionless free-surface
Hartmann flow with Ha = 3. The regions of instability for the soft and hard modes, indicated
in (a) and (c), are distinguishable by the corresponding phase velocity Re(c), which exceeds
unity in the case of the soft mode, but is less than the mean steady-state speed 〈U〉 for the
hard mode. In (a,b) and (c,d ), 〈U〉 is equal to 2/3 and 0.742, respectively.

Besides mode F, whenever the speed of propagation of surface waves in the674

absence of a basic flow is large compared to the steady-state velocity, the spectrum675

also contains an upstream-propagating (Re(c) < 0) surface mode (e.g. figure 4 in676

Giannakis et al. 2009). As Re grows, that mode joins the A branch and eventually677

becomes unstable. The latter instability, oftentimes referred to as the ‘hard instability’678

(Lin 1967; De Bruin 1974; Floryan et al. 1987), is the free-surface analogue of the679

Tollmien–Schlichting wave in plane Poiseuille flow (Lin 1944); i.e. it is caused by680

positive Reynolds stress associated with a critical layer that develops for suitable681

values of the mode’s phase velocity.682

As shown in figure 4 (a), the growth-rate contours of the hard mode in the683

(Re, α) plane are qualitatively similar to those of the unstable mode in channel684

flow (Shen 1954). In fact, if gravitational and surface-tension forces are decreased685

to zero the critical parameters of the hard mode approach the (Rec, αc, Cc) =686

(5772.2, 1.021, 0.264) values computed for plane Poiseuille flow (Orszag 1971),687

revealing their common nature. Increasing Ga results in the instability region688

extending to progressively larger wavenumbers (see e.g. the Ha = 0 results in table 2),689
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Ha Rec αc Cc

Ga = 8.3 × 106

0 3.7113036 × 103 1.87198 × 100 2.49413 × 10−1

0.5 4.5019913 × 103 1.59323 × 100 2.48917 × 10−1

1 8.5959446 × 103 1.13443 × 100 2.34231 × 10−1

2 2.8176098 × 104 9.41259 × 10−1 1.92059 × 10−1

5 1.6404990 × 105 1.13450 × 100 1.56426 × 10−1

10 4.3981065 × 105 1.73916 × 100 1.54789 × 10−1

20 9.6176655 × 105 3.23761 × 100 1.55011 × 10−1

50 2.4155501 × 106 8.07657 × 100 1.55029 × 10−1

100 4.8311017 × 106 1.61537 × 101 1.55030 × 10−1

Ga = 8.3 × 107

0 7.3610164 × 103 2.81462 × 100 1.84251 × 10−1

0.5 7.4343292 × 103 2.77817 × 100 1.85689 × 10−1

1 7.7154319 × 103 2.64647 × 100 1.89974 × 10−1

2 2.3929863 × 104 1.10416 × 100 1.91208 × 10−1

5 1.6378495 × 105 1.13615 × 100 1.56420 × 10−1

10 4.3979016 × 105 1.73922 × 100 1.54788 × 10−1

20 9.6176624 × 105 3.23764 × 100 1.55011 × 10−1

50 2.4155501 × 106 8.07657 × 100 1.55029 × 10−1

100 4.8311017 × 106 1.61537 × 101 1.55030 × 10−1

Ga = 8.3 × 108

0 1.9476764 × 104 3.30597 × 100 1.33088 × 10−1

0.5 1.9531440 × 104 3.29373 × 100 1.34239 × 10−1

1 1.9704003 × 104 3.25532 × 100 1.37611 × 10−1

2 2.0605875 × 104 3.06079 × 100 1.50076 × 10−1

5 1.6107058 × 105 1.15339 × 100 1.56349 × 10−1

10 4.3958470 × 105 1.73985 × 100 1.54786 × 10−1

20 9.6176320 × 105 3.23764 × 100 1.55011 × 10−1

50 2.4155501 × 106 8.07657 × 100 1.55029 × 10−1

100 4.8311017 × 106 1.61537 × 101 1.55030 × 10−1

Table 2. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the
hard mode in inductionless free-surface Hartmann flow, computed for Galilei number
Ga/(8.3 × 107) ∈ {0.1, 1, 10}, capillary number Ca = 0.07 and representative values of the
Hartmann number Ha in the interval [0, 100].

where the upper and lower branches of the neutral-stability curve Im(c) = 0 intersect690

in a cusp-like manner. However, the hard mode’s critical Reynolds number does not691

vary monotonically with the strength of the flow-normal gravitational force (De Bruin692

1974; Floryan et al. 1987). In particular, for the Ca = 0.07 capillary number used here,693

Rec decreases with Ga � 107 (e.g. in table 2, Rec drops to 3711.3 for Ga = 8.3 × 106)694

but becomes an increasing function of the Galilei number for sufficiently strong695

gravitational fields, eventually exceeding the corresponding critical Reynolds number696

for channel flow. For instance, in figure 4 (a) the hard mode’s critical parameters are697

(Rec, αc, Cc) = (7361.0, 2.815, 0.184).698

As for the soft mode, it is evident from the structure of the Im(c) = 0 contour in699

figure 4 (a), which runs parallel to the log(α) axis for α � 1, that its region of instability700

in the (Re, α) plane extends to arbitrarily small wavenumbers. This makes the soft701

mode amenable to study using regular perturbation theory for large wavelengths702

(α ↘ 0), when, in contrast, an analytic treatment of the hard mode would require703
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the full machinery of singular asymptotic expansions (e.g. Drazin & Reid 2004).704

In particular, Yih (1963) has established that the lower branch of the soft mode’s705

neutral-stability curve is the α = 0 axis and, further, that its upper branch, shown in706

figure 4 (a), emanates from a bifurcation point located at (Reb, 0) = ((5Ga/8)1/2, 0),707

with corresponding phase velocity Cb = 2 (see also § A.1 of the Appendix).708

As a check on the proximity of the bifurcation point (Reb, 0) to the critical709

point (Rec, αc) of the soft mode for the problem in figure 4 (a), which is strongly710

suggested by the direction of the Im(c) = 0 contour for α � 1, we have numerically711

computed the minimum Reynolds number Rem for instability at fixed α = 10−5. The712

Rem = 7202.4298 numerical result is very close to the analytically determined value713

Reb = 7202.4301 for the Reynolds number at the bifurcation point, as was also714

observed in a number of calculations with Ga ∈ [103, 109]. Still, for our reference715

problem with (Ga, Ca) = (8.3 × 107, 0.07), Rem is smaller than the corresponding716

Reb by an amount of order 10−8, which in all likelihood is not due to numerics717

(e.g. the discrepancy did not disappear by increasing the polynomial degree of the718

discretization scheme). This observation is consistent with a fourth-order asymptotic719

result that for any capillary number Ca there exists a lower bound in Ga above which720

dRe/dα is negative on the Im(c) = 0 contour, in the neighbourhood of the bifurcation721

point (see § A.1.3 of the Appendix). For Ca = 0.07 that lower bound amounts to722

Ga ≈ 3.13 × 105, indicating that for the problem in figure 4 (a), αc = 0 is not an exact723

statement. However, we expect the smallness of αc to render any unstable modes with724

Re <Reb irrelevant in a laboratory context, even if the true critical Reynolds number725

were to deviate significantly from Reb.726

4.2. Inductionless free-surface Hartmann flow727

In inductionless Hartmann flow the magnetic field is treated as a background variable,728

unaffected by the motion of the fluid. However, it influences normal-mode stability729

on one hand by modifying the steady-state velocity profile (2.26a), therefore altering730

the energy transfer to the perturbations mediated by viscosity (represented by the731

terms ΓR and ΓaU in (3.26)), and on the other hand by means of the Lorentz force732

(2.7b), whose only non-zero component fx := −Ha2Re−1ux is streamwise. The latter733

has a direct dissipative effect associated with resistivity (the energy transfer rate734

Γη) but may also indirectly affect ΓR , ΓaU and the viscous-dissipation rate Γν by735

modifying the perturbed velocity field. In free-surface problems, as is the case with736

their fixed-boundary counterparts (Lock 1955; Potter & Kutchey 1973; Takashima737

1996), the combined outcome of the flow-normal external magnetic field is to suppress738

instabilities (Hsieh 1965; Ladikov 1966; Gupta & Rai 1968). In fact, even moderate739

Hartmann numbers (Ha ∼ 3) are sufficient to shift the onset of the soft and hard740

instabilities to Reynolds numbers significantly higher than in non-MHD flows, in the741

manner illustrated by the eigenvalue contour plots in figure 4 (b).742

The critical Reynolds number, wavenumber and phase velocity of the hard mode,743

computed numerically in figure 5 as a function of the Hartmann number Ha ∈744

[0.1, 200] for representative values of the Galilei number Ga/(8.3×107) ∈ {0.1, 1, 10},745

exhibit two distinct types of behaviour, depending on the relative strength of the746

gravitational and Lorentz forces. The first of these occurs when the Lorentz force is747

weak compared to gravity (e.g. the Ga = 8.3×108 example in figure 3 for Ha � 2) and748

is characterized by small variation of the critical parameters with Ha . As observed749

in the (Re, α) plane, the main influence of the applied field in this regime is to750

reduce the wavenumber bandwidth of the cusp-like tip of the hard mode’s instability751

region, with little change in the position (Rec, αc) of the intersection point between752
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Figure 5. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the hard
mode in inductionless free-surface Hartmann flow with Ga/(8.3 × 107) ∈ {0.1, 1, 10}, and
values of the Hartmann number Ha logarithmically spaced on the interval [0.1, 200]. The
capillary number is Ca = 0.07 throughout. The critical parameters for channel Hartmann
flow (Takashima 1996) and the result Rec = 48 250Ha for the unbounded Hartmann layer
(Lingwood & Alboussiere 1999) are plotted in dashed lines for reference.

the upper and lower branches of the neutral-stability curve. Eventually, however, the753

tip collapses, and αc rapidly decreases towards the corresponding channel-flow result.754

For Hartmann numbers larger than that threshold the behaviour of the hard mode’s755

critical parameters changes character, and as can be deduced by comparing table 2756

to the calculations in table 1 of Takashima (1996), it becomes nearly identical to757

that of the unstable mode in inductionless channel Hartmann flow. In particular, the758

wavelength of the critical mode becomes shorter, as expected from the decreasing759

thickness of the Hartmann layer (Lock 1955), and for sufficiently strong fields the760

critical Reynolds number as a function of Ha is well described by the Rec = 48 250 Ha761
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Figure 6. Critical Reynolds number Rec and wavenumber αc as functions of the
Hartmann number for the soft mode in inductionless free-surface Hartmann flow with
Ga/(8.3 × 107) ∈ {0.1, 1, 10}. The capillary number is Ca = 0.07 throughout. The Reynolds
number at the bifurcation point Reb(Ha), given by (4.1a), is plotted as the dotted lines. The
critical phase velocity Cc for Ga = 8.3 × 107 is shown in figure 11. The fluctuations present
in the Ha � 0.2 and Ha � 3 results for αc are a consequence of the ill conditioning of the
calculation described in the caption to table 3.

linear increase computed by Lingwood & Alboussiere (1999) for the unbounded762

Hartmann layer. In separate test calculations, where the Lorentz-force terms in (2.46)763

were set to zero but the Hartmann velocity profile was retained, we have observed764

that the critical parameters of the hard mode remain close to the results in table 2,765

in agreement with the observation by Lock (1955) that the principal contribution to766

the behaviour of (Rec, αc, Cc) comes from the modification of basic flow, rather than767

electromagnetic forces acting on the perturbed velocity field.768

As for the soft mode, it follows from the large-wavelength analysis in § A.1 of769

the Appendix (see also Hsieh 1965; Ladikov 1966; Gupta & Rai 1968) that when770

Ha is non-zero the α = 0 axis remains part of its neutral-stability curve, and a771

bifurcation point (Reb, 0), from which the upper part of the neutral-stability curve772

branches off, is again present in the (Re, α) plane. In particular, the position of the773

bifurcation point on the α = 0 axis and the corresponding modal phase velocity Cb,774

respectively determined from the coefficients γ2 and γ1 in the perturbative expansion775

γ = γ1α + γ2α
2 + O(α)3 for the complex growth rate γ , are given by776

Reb =
(8Ga)1/2 sinh(Ha/2)(Ha − tanh(Ha))1/2

(Ha coth(Ha/2) sech3(Ha)(2Ha(2 + cosh(2Ha)) − 3 sinh(2Ha)))1/2
, (4.1a)

Cb = 1 + sech(Ha), (4.1b)

where Reb ↘ (5Ga/8)1/2 and Cb ↗ 2 tend to their non-MHD values when Ha is777

decreased to zero. We remark that (4.1a) agrees with the corresponding expression778

derived by Hsieh (1965) upon substitution for Ga using (2.41a). However, contrary779

to the non-MHD case examined in § 4.1, for Hartmann numbers lying in a relatively780

narrow band the bifurcation point becomes clearly separated from the critical point781

(Rec, αc). This is illustrated in figure 6 and table 3, where for the examined values of782
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Ha Rec/Ga1/2 Reb/Ga1/2 αcGa1/2 Cc Cb

Ga = 8.3 × 106

0.1 7.9405 × 10−1 7.9417 × 10−1 4.850 × 100 1.9950 × 100 1.9950 × 100

0.2 8.0418 × 10−1 7.7498 × 10−1 7.854 × 100 1.9810 × 100 1.9803 × 100

1 1.0784 × 100 1.1687 × 100 2.795 × 101 1.7026 × 100 1.6481 × 100

2 2.1251 × 100 2.5619 × 100 3.978 × 101 1.3185 × 100 1.2658 × 100

5 3.2659 × 101 3.5000 × 101 8.500 × 100 1.0137 × 100 1.0135 × 100

8 5.2610 × 102 5.4649 × 102 1.448 × 100 1.0007 × 100 1.0007 × 100

Ga = 8.3 × 107

0.1 7.9405 × 10−1 7.9417 × 10−1 4.483 × 100 1.9951 × 100 1.9950 × 100

0.2 8.0417 × 10−1 8.0498 × 10−1 7.779 × 100 1.9810 × 100 1.9803 × 100

1 1.0783 × 100 1.1687 × 100 2.776 × 101 1.7027 × 100 1.6481 × 100

2 2.1249 × 100 2.5619 × 100 3.984 × 101 1.3186 × 100 1.2658 × 100

5 3.2666 × 101 3.5000 × 101 8.254 × 100 1.0137 × 100 1.0135 × 100

8 5.2616 × 102 5.4649 × 102 1.342 × 100 1.0007 × 100 1.0007 × 100

Ga = 8.3 × 108

0.1 7.9405 × 10−1 7.9417 × 10−1 4.453 × 100 1.9951 × 100 1.9950 × 100

0.2 8.0417 × 10−1 8.0498 × 10−1 7.702 × 100 1.9810 × 100 1.9803 × 100

1 1.0783 × 100 1.1687 × 100 2.799 × 101 1.7027 × 100 1.6481 × 100

2 2.1249 × 100 2.5619 × 100 3.942 × 101 1.3186 × 100 1.2658 × 100

5 3.2644 × 101 3.5000 × 101 9.348 × 100 1.0137 × 100 1.0135 × 100

8 5.2632 × 102 5.4649 × 102 1.225 × 100 1.0007 × 100 1.0007 × 100

Table 3. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the
soft mode in inductionless free-surface Hartmann flow, computed for Galilei number
Ga/(8.3 × 107) ∈ {0.1, 1, 10}, capillary number Ca = 0.07 and representative values of the
Hartmann number Ha in the interval [0.1, 8]. Also shown are the Reynolds number Reb at
the bifurcation point and the corresponding phase velocity Cb, determined by (4.1). In order
to illustrate the dependence of the critical parameters on Ga , the results for Rec and Reb have
been scaled by Ga1/2, while αc has been scaled by Ga−1/2. We remark that because the Im(c)
contours for the soft mode are nearly parallel to the log(α) axis when α � 1 (see figure 4 b),
and the gradient of Re(γ (Re, α)) becomes shallow as Ha grows (this is a consequence of the
strong-field neutrality of mode F discussed in the main text), critical-parameter calculations for
the soft instability are significantly more poorly conditioned than the corresponding ones for
the hard mode. As a result, the number of attained significant digits in the calculations is smaller
than in table 2, especially so for αc . In addition, there is evidence of an O(10−4) systematic drift
in the results for αc when the optimization solver used to compute (Rec, αc, Cc) is restarted
with initial conditions determined from the output of preceding iterations, indicating that with
the current computational resources, some of our results have not yet reached an asymptotic
limit. However, we do not expect this to impart significant changes to the shape of the curves
in figure 6.

the Galilei number Ga/8.3×107 ∈ {0.1, 1, 10} the critical wavenumber follows an αc ∝783

Ha3/4 increase for Ha � 2 (e.g. reaching α ≈ 0.0044 for Ha ≈ 1.9 and Ga = 8.3 × 107),784

before rapidly diminishing again at larger Hartmann numbers. As is the case with the785

Reb ∝ Ga1/2 scaling in (4.1a), all the Rec results nearly collapse to a single curve when786

scaled by Ga1/2. The calculations also suggest that an αc ∝ Ga−1/2 scaling applies787

for the critical wavenumber, but this cannot be firmly confirmed with the presently788

attainable level of numerical accuracy and precision. As expected, whenever αc is789

small, the deviation of the critical Reynolds number and phase velocity from (4.1) is790

less significant, but even when αc is close to its maximum value the relative error is791

still acceptable. In table 3, for instance, Reb overestimates Rec by approximately 20 %792

when Ha = 2, while Cb underestimates Cc by 4%. The influence of αc > 0 on the793
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Figure 7. Eigenvalues of inductionless free-surface Hartmann flow at Re = 7 × 105,
α = 2 × 10−3, Ga = 8.3 × 107 and Ca = 0.07. The Hartmann number in (a) and (b) is
Ha = 10 and 20, respectively. The evolution of this spectrum with Ha ∈ [0.1, 50] is shown in
movie 1, available with the online version of the paper.

critical Reynolds number can also be observed by examining the Im(c) = 0 contour794

in figure 4 (b), where Re decreases from 5.49 × 104 when α = 10−5 to 4.74 × 104 ≈ Rec795

when α = 0.0032 ≈ αc.796

The agreement between the analytical results for (Reb, Cb) and the numerically797

computed values for (Rec, Cc) steadily improves as αc(Ha) enters the decreasing phase798

(Ha � 2 in figure 6). As such, (4.1a) can be used to deduce that at sufficiently large799

Ha the soft mode’s critical Reynolds number Rec ∼ (Ga/Ha)1/2 exp(Ha) increases800

exponentially with the Hartmann number, and its critical phase velocity Cc ∼ 1 +801

2 exp(−Ha) decreases exponentially towards unity. Similar small-α calculations802

(see (A 28) and (A 29)) lead to the results that Reb also increases exponentially803

in (physically unrealistic) non-MHD problems with the Hartmann velocity profile804

but only quadratically when the Lorentz-force terms in (2.46) are retained, while the805

velocity profile keeps its non-MHD parabolic form. Therefore, the formation of the806

Hartmann velocity profile is the main driver of the critical-parameter behaviour of807

the soft instability as well, although it should be noted that the exponent in (A 28a)808

is smaller than the corresponding one derived from (4.1a), and as a result, the809

critical Reynolds number of the full problem, including both Lorentz forces and810

the Hartmann velocity profile, outgrows that of the non-MHD test problem without811

bound.812

Turning now to the behaviour of the eigenvalues on the complex-c plane, a813

prominent feature of inductionless Hartmann flow, illustrated in figure 7 and movie 1814

(see table 4 for the corresponding numerical data), is that as Ha increases the P815

branch of the spectrum becomes aligned with the S branch, and the eigenvalues816

in the A branch collapse towards the P–S branch intersection point. In addition,817

with the exception of mode F, which is seen to move along the Re(c) axis towards818

Re(c) = 1, the eigenvalues are translated into smaller values of Im(c) (quadratically819
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c Ea/E
Ha = 10

1 F 1.000478880697718 × 100 − 1.492458547790363 × 10−3 i 9.80634 × 10−1

2 P1 9.969844758638947 × 10−1 − 7.510300218671238 × 10−2 i 1.55113 × 10−2

3 P2 9.844830185724478 × 10−1 − 1.070009578761852 × 10−1 i 1.56260 × 10−3

4 P3 9.679739162321193 × 10−1 − 1.555307117857878 × 10−1 i 3.70125 × 10−4

5 P4 9.480545293986525 × 10−1 − 2.173575052123932 × 10−1 i 1.08068 × 10−4

6 P5 9.235179572370349 × 10−1 − 2.886322049592563 × 10−1 i 3.89742 × 10−5

7 A1 4.169901573651648 × 10−1 − 3.220427370877234 × 10−1 i 7.72718 × 10−5

8 P6 9.026456030169425 × 10−1 − 3.595290667757633 × 10−1 i 1.62104 × 10−5

9 S1 9.009193226866442 × 10−1 − 4.475126687270328 × 10−1 i 4.35020 × 10−6

10 S2 9.003564254536676 × 10−1 − 5.601694489236487 × 10−1 i 1.00325 × 10−6

Ha = 20
1 F 1.000045818436596 × 100 − 5.289119738767267 × 10−4 i 9.98203 × 10−1

2 P1 9.994955777811616 × 10−1 − 2.877934996693214 × 10−1 i 1.41502 × 10−3

3 P2 9.960450826999606 × 10−1 − 3.075429925109489 × 10−1 i 1.54941 × 10−4

4 P3 9.898991606163317 × 10−1 − 3.445398689126118 × 10−1 i 5.56023 × 10−5

5 P4 9.817920008849399 × 10−1 − 3.974550352653800 × 10−1 i 2.52511 × 10−5

6 P5 9.721963507775145 × 10−1 − 4.656744531110017 × 10−1 i 1.23326 × 10−5

7 P6 9.615513110612295 × 10−1 − 5.497038985606164 × 10−1 i 6.15471 × 10−6

8 A1 7.040044446493452 × 10−1 − 6.496646531013073 × 10−1 i 2.32334 × 10−5

9 S1 9.510925679889382 × 10−1 − 6.510431012818730 × 10−1 i 3.02892 × 10−6

10 S2 9.439623776920884 × 10−1 − 7.698041542899734 × 10−1 i 1.41918 × 10−6

Table 4. Complex phase velocity c and free-surface energy Ea , normalized by the total energy
E = Eu + Ea , of the 10 least stable modes of the inductionless problems in figure 7. The mean
steady-state velocity 〈U〉, given by (2.29), is 0.9001 (Ha = 10) and 0.9500 (Ha = 20). Due to
the alignment of the P and S branches, there exists ambiguity in distinguishing between the
most stable P mode and the least stable S mode. Here we consider that the P branch comprises
of the first six modes (in order of decreasing Im(c)) with Re(c) > 〈U〉.

with Ha , as shown in figure 8). As in non-MHD problems, the phase velocity of820

the S-family modes is (asymptotically) equal to the average steady-state speed (2.29),821

which approaches unity as Ha grows, and Re(c) lies in the interval (〈U〉, 1) for modes822

in the P branch. Moreover, the phase velocity of mode F remains greater than unity,823

even for strong fields (Ha ∼ 103). By performing suitable test calculations, we have824

verified that the branch alignment and Im(c) decrease observed for the A, P and S825

modes are independently caused by the formation of the Hartmann velocity profile826

and the Lorentz force, respectively.827

The exponential Reb(Ha) growth in (4.1a) is a somewhat misleading indicator828

for the magnetic field’s stabilizing effect on mode F, which participates in the soft829

instability. The reason is that unlike the remaining modes in the spectrum (as well as830

all channel modes), whose decay rate increases quadratically with Ha as a consequence831

of Lorentz damping, mode F becomes asymptotically neutral for large magnetic field832

strengths. This behaviour is illustrated in figure 8, where the complex phase velocity833

and the results for the energy components and energy transfer rates are plotted834

as functions of Ha ∈ [10−2, 103] for the 10 least stable modes of the non-MHD835

problem in figure 3. As the Hartmann number grows, the total mechanical energy836

transfer rate Γmech := ΓR + Γν + ΓaU (the inductionless version of (3.27a)) to mode F837

experiences a sharp drop, caused by a decrease in ΓaU associated with the flattening838

of the velocity profile. This, in conjunction with resistive dissipation Γη, which in839

inductionless problems is the only component of the electromagnetic energy transfer840
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Figure 8. Complex phase velocity c, kinetic and surface energies Eu and Ea (normalized
by the total energy E = Eu + Ea) and mechanical and electromagnetic energy transfer rates
Γmech and Γem for the 10 least stable modes of inductionless free-surface Hartmann flow at
Re = 7 × 10 5 , α = 2× 10−3, Ga = 8.3× 107 and Ca = 0.07, showing the qualitatively different
dependence of the F mode and the A, P and S modes on the Hartmann number Ha . In (a),
(b), (e) and (f ), the solid and dashed lines respectively correspond to negative and positive
values. Besides mode F, the curves for modes A1, P1, P2 and S2 (the modes indexed according
to their Ha = 0 values; see table 1) are indicated.

rate Γem, suffices to stabilize the mode for all Ha � 6. However, instead of growing841

quadratically with Ha , as it does for the A, P and S families of modes, the decay842

rate −Γ of mode F turns around and approaches zero following an Ha−2 scaling.843

At the same time, the mode’s energy content becomes almost entirely potential, with844

the kinetic energy following the power law Eu/E ∝ Ha−4. In contrast, for sufficiently845
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Figure 9. (a) Modulus (solid lines) and phase (dashed lines) of the velocity eigenfunction û(z)

and (b) kinetic energy density Êu(z) of mode F for Re = 7 × 105, α = 2×10−3, Ga = 8.3×107,
Ca = 0.07 and Hartmann number Ha ∈ {3, 10, 20, 40}. The phase of the eigenfunction is
computed relative to the free-surface oscillation amplitude â. As Ha grows, û develops a linear
profile away from the wall, which corresponds to a uniform streamwise velocity amplitude
(because ux is proportional to Dû).

large Hartmann numbers, free-surface oscillations become negligible for the A, P and846

S modes, as manifested by their decaying surface energy Ea .847

Figure 9 shows that as the Hartmann number is increased, the velocity eigenfunction848

û(z) corresponding to mode F evolves from a typical surface-wave-like profile at small849

Hartmann numbers to a state of nearly z-independent streamwise flow, characterized850

by uniform distribution of the kinetic energy away from the wall. Moreover, in line851

with the kinematic boundary condition (2.48b) with C ≈ 1 (i.e. γ ≈ −iα), at large852

Hartmann numbers û(0) exhibits a 180◦ phase difference relative to the free-surface853

oscillation amplitude â, which in the real representation corresponds to the streamwise854

velocity perturbations ux(0) being 90◦ out of phase with the free-surface oscillation855

amplitude a (recall that in accordance with (2.42a), ux = Im(Dû/α exp(γ t + iαx))).856

The observed scaling of the kinetic energy of mode F for strong magnetic fields is857

dimensionally consistent with a time-averaged equilibrium determined by the work858

done by Lorentz and gravitational stresses acting on the free surface. We approximate859

this balance by setting f ∼ g, where f ∼ Ha2Re−1|ux (0)| and g ∼ cos(θ)Fr−2|a| =860

GaRe−2|a| are respectively estimates of the Lorentz and gravitational forces. Because861

at large Ha the velocity-eigenfunction gradient Dû is nearly constant over the inner862

part of the domain, and at large wavelengths the ratio (‖ux‖/‖uz‖)2 ∼ α−2 is expected863

to be large, f ∼ g leads to Eu/Ea ∼ (|ux(0)| cos(θ)/(Fr2|a|))2 ∼ Ga/Ha4. The latter864

scaling is consistent with the Eu/E results in figure 8 (note that Eu/E ≈ Eu/Ea865

for Eu � Ea), and in separate calculations we have checked that the Eu/Ea ∝ Ga866

scaling applies at fixed Ha . Aside from figure 8, a |Γ | ∝ Ha−2 strong-field behaviour867

for mode F was also recorded in trial inductionless problems with U (z) set to the868

Poiseuille profile and is also expected on the basis of large-wavelength approximations869

(see (A 29c)). On the other hand, in non-MHD calculations with the Hartmann870

velocity profile, as well as in the corresponding small-α expansion (A 28c), the871

modal growth rate Γ tends to a Ha-independent negative value for Ha � 1. These872
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observations, coupled with the dimensional argument for Eu/Ea , suggest that the873

strong-field neutrality of mode F is the outcome of a balance between gravitational874

and Lorentz forces and does not rely on the form of the steady-state velocity profile.875

4.3. Free-surface Hartmann flow at Pm � 10−4876

In low-Pm channel Hartmann flow with insulating boundary conditions the critical877

Reynolds number, wavenumber and phase velocity are known to be well approximated878

by the inductionless scheme. In particular, the calculations by Takashima (1996) have879

established that for Pm � 10−4 the relative error incurred in Rec is less than 0.004,880

even at Hartmann numbers as high as 100, where Rec is of order 107. In free-881

surface flow (again with an insulating wall), however, we find that while the critical882

parameters of the hard mode are equally insensitive to Pm � 1 as in channel problems,883

the soft mode’s behaviour differs markedly between the small-Pm and inductionless884

cases. Moreover, the boundary conditions now support a pair of travelling Alfvén885

waves, the upstream propagating of which may become unstable at sufficiently high886

Alfvén numbers. When conducting boundary conditions are enforced, the Alfvén887

modes are removed from the spectrum, and the soft mode’s critical Reynolds number888

becomes a decreasing function of Ha � 1. In general, these observations indicate889

that the dynamical response of the magnetic field to the flow, which is neglected in890

the inductionless approximation, plays an important role in the linear stability of891

free-surface MHD flows, even when the working fluid has large magnetic diffusivity.892

4.3.1. Properties of the least stable modes893

We illustrate the behaviour of the top end of the spectrum for problems with an894

insulating wall in figure 10, where contours of the complex phase velocity in the895

(Re, α) plane are plotted for the least stable mode at fixed Pm = 10−5 (a value896

lying in the upper end of the Pm regime for liquid metals) and moderately small897

Hartmann number Ha ∈ [3, 10]. It is evident from the proximity of the portions of898

the inductionless and Pm = 10−5 neutral-stability curves corresponding to the hard899

mode, as well as from the close agreement between the critical-Reynolds-number900

calculations in tables 2 and 5, that the influence of a finite magnetic diffusivity on the901

hard instability is weak, with Rec being slightly smaller when Pm is non-zero compared902

to its value in the inductionless limit. In the case of the soft mode, however, prominent903

differences in the stability properties exist even at small Hartmann numbers.904

First, the structure of the Im(c) contours in figure 10 suggests that the α = 0 axis905

is no longer part of the neutral-stability curve Im(c) = 0, and this can be confirmed906

by means of large-wavelength perturbation theory. In particular, according to the907

discussion in § A.2 of the Appendix, free-surface Hartmann flow with an insulating908

wall supports, besides mode F, a second mode with vanishing complex growth rate γ909

in the limit α ↘ 0, of magnetic origin. The zeroth-order degeneracy between mode F910

and this magnetic mode is broken at first order in α, where there exist two distinct911

solutions, respectively γ
(F )
1 and γ

(M)
1 , for the coefficient γ1 in the perturbative series912

γ = γ0 +γ1α+γ2α
2 +O(α3). Both solutions have negative real part for all Ha > 0 and913

Pm > 0 (note that Re(γ (M)
1 ) is negative even when Ha equals zero), which implies that914

for any Reynolds number there exists an upper bound αm in α, below which mode F915

is stable. That is Re(γ ) is negative for 0 < α < αm or, as observed in figure 10, Im(c) is916

negative for 0 � α <αm (cf. inductionless flow). We remark that because γ vanishes in917

the limit α ↘ 0, it is important to distinguish between the definitions Im(c) = 0 and918

Re(γ ) = 0 for the soft mode’s neutral-stability curve, since with the latter definition919

the α = 0 axis remains part of the curve even when Re(γ1) �= 0. In separate numerical920
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Figure 10. Contours of the complex phase velocity c in the (Re, α) plane for the least stable
mode of free-surface Hartmann flow with an insulating wall at Pm = 10−5, Ga = 8.3 × 107,
and Ca = 0.07. The Hartmann number Ha is (a,b) 3, (c,d ) 5, (e,f ) 6 and (g,h) 10. The
curves labelled � in the panels for Im(c) are the Im(c) = 0 contours of the corresponding
inductionless problems. The neutral-stability curves for Pm = 10−5, labelled N, are drawn in
the Re(c) panels for reference.
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Ha Rec αc Cc

Pm = 10−5

0.5 7.4343262 × 103 2.77817 × 100 1.85689 × 10−1

1 7.7154109 × 103 2.64640 × 100 1.89960 × 10−1

2 2.3923849 × 104 1.10426 × 100 1.91216 × 10−1

5 1.6371768 × 105 1.13613 × 100 1.56438 × 10−1

10 4.3954479 × 105 1.73924 × 100 1.54813 × 10−1

20 9.6100175 × 105 3.23776 × 100 1.55044 × 10−1

50 2.4134695 × 106 8.07606 × 100 1.55064 × 10−1

100 4.8268720 × 106 1.61512 × 101 1.55064 × 10−1

Pm = 10−4

0.5 7.4342966 × 103 2.77815 × 100 1.85683 × 10−1

1 7.7152014 × 103 2.64657 × 100 1.89973 × 10−1

2 2.3879649 × 104 1.10492 × 100 1.91273 × 10−1

5 1.6340601 × 105 1.13611 × 100 1.56539 × 10−1

10 4.3859195 × 105 1.73911 × 100 1.54934 × 10−1

20 9.5885884 × 105 3.23738 × 100 1.55171 × 10−1

50 2.4078809 × 106 8.07604 × 100 1.55197 × 10−1

100 4.8155345 × 106 1.61542 × 101 1.55200 × 10−1

Table 5. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the
hard mode in free-surface Hartmann flow with insulating boundary conditions, computed
at Galilei number Ga = 8.3 × 107, capillary number Ca = 0.07, magnetic Prandtl number
Pm ∈ {10−5, 10−4} and Hartmann number Ha ∈ [0.5, 100].

calculations we have checked that αm becomes smaller when Pm is decreased at921

fixed Ha , which is consistent with the large-wavelength result (A 41) that in the limit922

Pm ↘ 0, γ
(F )
1 reaches the inductionless value (A 22), while γ

(M)
1 is singular.923

Performing a similar type of analysis establishes that (i) when the induced magnetic924

field B is set to zero, Re(γ1) is still negative for mode F, as well as for the magnetic925

mode; (ii) when U and B are both set to zero, γ1, now given by (A 42), is negative926

for the magnetic mode but vanishes for mode F; and (iii) in Hartmann flow with927

a perfectly conducting wall, the b̂(−1) = 0 constraint imposed on the magnetic928

field eigenfunction eliminates the magnetic mode, and γ
(F )
1 becomes equal to the929

corresponding expansion coefficient in the inductionless limit. It therefore appears930

that the suppression of the soft instability for α ↘ 0 is the combined outcome of the931

boundary conditions, which allow for the presence of the magnetic mode and the932

coupling between mode F and the magnetic mode provided by the steady-state flow.933

The soft mode’s departure from inductionless behaviour is also prominent at larger934

values of αRe. As can be seen in figure 10, at moderate Hartmann numbers (Ha ∼ 5)935

regions of stability emerge in the (Re, α) plane that would contain unstable modes936

in the inductionless limit. Moreover, as Ha grows, a wedge-like instability region937

forms, extending to Reynolds numbers significantly smaller than in the corresponding938

inductionless problems. Unstable modes may now have phase velocity smaller than939

unity, but Re(c) > 1 is found to apply for the modes close to the tip of the wedge-like940

region (including the critical mode), at least for the Ha � 103 interval covered in our941

calculations.942

The critical parameters of the soft mode as a function of Ha ∈ [10−1, 103] are943

plotted in figure 11 for logarithmically spaced values of the magnetic Prandtl number944

Pm ∈ {10−6, 10−5, 10−4} (see also table 6). As expected from the contour plots in945

figure 10, when the Hartmann number is small, Rec is close to its value in the946
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Figure 11. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the soft
mode as functions of the Hartmann number Ha ∈ [10−1, 103] for inductionless problems
(curves labelled I) and insulating-wall problems with Pm ∈ {10−6, 10−5, 10−4}. Also shown, as
the dotted lines, are the Reynolds number Reb and the corresponding phase velocity Cb at
the bifurcation point of the neutral-stability curve, evaluated for conducting-wall problems by
means of the large-wavelength results (A 43) and (4.1b). The Galilei and capillary numbers are
Ga = 8.3×107 and Ca = 0.07 throughout. As in figure 6, the fluctuations in the αc(Ha) curves
are due to the ill conditioning of critical-parameter calculations for the soft mode. Aside from
these fluctuations, we do not expect significant effects on the shape of the curves due to ill
conditioning.

inductionless limit. For instance, the relative difference between the Ha = 1 results947

in table 6 and the corresponding inductionless results in table 3 is less than 3.5 %.948

However, once the magnetic field strength exceeds a threshold, which decreases with949

Pm , Rec(Ha) branches off from the exponential growth (4.1a) and follows closely the950

power law Rec ∝ Ha2/3. During that transition, the decrease of the wavenumber with951

Ha observed in the inductionless limit is reversed, switching over to an αc ∝ Ha5/4
952

scaling. Moreover, the exponential decrease (4.1b) of the critical phase velocity relative953
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Ha Rec αc Cc − 1

Pm = 10−6

0.1 7.2341 × 103 5.353 × 10−4 9.9504 × 10−1

1 9.8246 × 103 3.069 × 10−3 7.0268 × 10−1

10 4.7810 × 105 9.369 × 10−4 1.2076 × 10−3

100 2.1205 × 106 1.670 × 10−2 5.7707 × 10−5

1000 9.3869 × 106 2.113 × 10−1 1.8874 × 10−6

Pm = 10−5

0.1 7.2343 × 103 5.355 × 10−4 9.9505 × 10−1

1 9.8253 × 103 3.072 × 10−3 7.0314 × 10−1

10 2.1891 × 105 1.978 × 10−3 4.9470 × 10−3

100 9.7469 × 105 3.552 × 10−2 2.5559 × 10−4

1000 3.8912 × 106 2.244 × 10−1 4.1975 × 10−6

Pm = 10−4

0.1 7.2322 × 103 6.005 × 10−4 9.9563 × 10−1

1 9.5341 × 103 2.979 × 10−3 7.3307 × 10−1

10 1.0034 × 105 3.571 × 10−3 1.5546 × 10−2

100 4.4148 × 105 7.375 × 10−2 9.8053 × 10−4

1000 1.3161 × 106 6.202 × 10−2 1.4324 × 10−6

Table 6. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the
soft mode in free-surface Hartmann flow with insulating boundary conditions, computed
at Galilei number Ga = 8.3 × 107, capillary number Ca = 0.07, magnetic Prandtl number
Pm ∈ {10−6, 10−5, 10−4} and Hartmann number Ha ∈ [10−1, 103]. These calculations are
affected by a similarly ill conditioning as the corresponding ones for inductionless problems in
table 3. In particular, we have observed an O(10−4) systematic drift in some of the results for
αc , arising when the optimization solver used to compute (Rec, αc, Cc) is restarted using the
output of previous calculations for initialization. With the presently available computational
resources we were not able to perform a sufficiently large number of iterations so as to
establish convergence in αc . However, we expect the results for Rec and Cc to be affected by
this issue to a lesser extent.

to the steady-state flow at the free surface becomes a Cc − 1 ∝ Ha−4/3 power law.954

In this intermediate Hartmann-number regime, the results for Rec(Ha), αc(Ha) and955

Cc(Ha) − 1 collapse to nearly single curves if scaled by Pm1/3, Pm−1/3 and Pm−2/3,956

respectively (though the agreement is not as good for the Pm = 10−4 data for957

Cc −1). The power-law behaviour of the critical parameters is only transient, however.958

Eventually, at sufficiently large Hartmann numbers, Rec(Ha) levels off (for Pm = 10−4959

this occurs around Ha = 500), and αc(Ha) becomes a decreasing function once again.960

The deviation of the critical Reynolds number of the soft instability from (4.1a) is961

even more pronounced in problems with a perfectly conducting wall. As outlined in962

§ A.2 of the Appendix, in this case the first-order coefficient in the perturbation series963

for γ is given by the same expression as in inductionless flows (i.e. (A 22)), which964

has vanishing real part, and as a result the α = 0 axis remains part of the neutral-965

stability curve. This enables the derivation of the closed-form expression (A 43) for966

the Reynolds number Reb at the bifurcation point, which, in the manner shown in967

figure 11, becomes a decreasing function of Ha , varying like Reb ∼ (Ga/Pm)1/2Ha−1
968

at large Hartmann numbers. Even though we have not explicitly computed the969

soft mode’s critical parameters for conducting-wall problems, we have verified in970

eigenvalue contour plots that as in inductionless flows, Reb is close to Rec. In any971

case, since Reb is an upper bound for Rec, the behaviour of Reb(Ha) suffices to972
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Insulating Conducting
Inductionless Insulating Conducting (B = 0) (B = 0)

Γ −1.0578 × 10−6 9.2461 × 10−6 2.2910 × 10−5 −1.1177 × 10−6 −1.0578 × 10−6

C − 1 4.5818 × 10−5 3.9237 × 10−3 −9.1720 × 10−4 3.3397 × 10−5 4.5808 × 10−5

Eu/E 1.7966 × 10−3 6.8769 × 10−2 3.3217 × 10−2 1.9035 × 10−3 1.7965 × 10−3

Eb/E 1.6250 × 10−3 9.2557 × 10−1 2.5348 × 10−6 2.6228 × 10−6

Eb+/E 4.3846 × 10−1 1.8511 × 10−3 8.9635 × 10−4 3.9822 × 10−9

Eb−/E 4.3696 × 10−1 8.9621 × 10−4

Ea/E 9.9820 × 10−1 5.4185 × 10−2 3.9363 × 10−2 9.9630 × 10−1 9.9820 × 10−1

ΓR −9.2340 × 10−9 6.8264 × 10−6 −1.6850 × 10−7 8.3862 × 10−9 −9.2227 × 10−9

ΓM 1.1921 × 10−4 2.9758 × 10−8 3.0503 × 10−7 9.7837 × 10−12

ΓJ 4.0665 × 10−5 2.1215 × 10−5 0 0
Γν −2.1990 × 10−8 −4.2321 × 10−5 −3.9619 × 10−7 −4.3489 × 10−8 −2.2006 × 10−8

Γη −1.0266 × 10−6 −1.2435 × 10−4 −1.9008 × 10−5 −1.3873 × 10−6 −1.0323 × 10−6

ΓaU 2.4801 × 10−15 −1.1324 × 10−12 5.8983 × 10−14 4.7636 × 10−15 2.0486 × 10−15

ΓaJ 9.2090 × 10−6 2.1239 × 10−5 0 0
Γmech −3.1224 × 10−8 5.1710 × 10−6 2.0650 × 10−5 −3.5102 × 10−8 −3.1229 × 10−8

Γem −1.0266 × 10−6 4.0697 × 10−6 2.2610 × 10−6 −1.0823 × 10−6 −1.0323 × 10−6

Table 7. Growth rate and phase velocity, energy components and energy transfer rates for
mode F at Re = 7 × 105, α = 2 × 10−3, Ga = 8.3 × 107, Ca = 0.07, Ha = 20 and Pm = 10−5.
The data in the leftmost column are for the corresponding inductionless problem, and therefore
all entries involving the magnetic field eigenfunction are omitted. Counting from the left, the
results in columns 2 and 4 are for insulating boundary conditions, while for those in columns 3
and 5 conducting boundary conditions have been imposed (i.e. the external magnetic energy
component Eb− is omitted). For the calculations in columns 4 and 5 the induced magnetic
field B has been set to zero, and as a result ΓJ and ΓaJ vanish.

conclude that in free-surface Hartmann flow with a perfectly conducting wall the973

external magnetic field leads to a reduction of the critical Reynolds number for974

instability for all Pm > 0.975

4.3.2. The role of the steady-state induced magnetic field976

Except for the large-wavelength instability suppression observed in problems with977

insulating boundary conditions, where, as stated in § 4.3.1, the modal decay rate is non-978

zero to linear order in α even when B vanishes, the discrepancy between inductionless979

and non-zero-Pm behaviour for mode F is mainly caused by the steady-state induced980

magnetic field (2.26b), through the contribution f J := Rm J × b ∼ Pm1/2Ha‖DB‖‖b‖981

to the linearized Lorentz force (2.7b) associated with the spanwise current J :=982

Rm−1∇ × B = Rm−1HaPm1/2DB y. As a demonstration, in figure 12 and table 7983

we have computed the complex phase velocity of mode F, as well as certain energy984

components and energy transfer rates, as a function of Ha ∈ [10−2, 103] for (i)985

Pm = 10−5 flows with insulating and perfectly conducting walls, (ii) the corresponding986

inductionless problems and (iii) insulating and conducting-wall problems with Pm =987

10−5 and B set to zero. The latter calculations are physically unrealistic, when Q1988
compared with the complete ones that include B help to bring out the influence of J989

in the observed instabilities.990

The results for the test problems with B = 0 agree fairly well with the corresponding991

ones in the inductionless limit. Here the main differences are that the total992

electromagnetic energy transfer rate Γem := Γη + ΓM now includes a small, positive993

contribution from the Maxwell stress and, for Ha � 30, that the modal phase velocity994
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Figure 12. Complex phase velocity c, kinetic and surface energies Eu and Ea (normalized by
the total energy E) and mechanical and electromagnetic energy transfer rates Γmech and Γem

for mode F in free-surface Hartmann flow at Re = 7 × 105, α = 2 × 10−3, Ga = 8.3 × 107,
Ca = 0.07 and Ha ∈ [10−2, 103]. The curves labelled (i) correspond to inductionless flow, while
(ii) and (iii) were evaluated at Pm = 10−5, respectively with insulating and perfectly conducting
boundary conditions. Curves (iv) and (v) are for the same problems as (ii) and (iii), respectively,
but with the magnetic field profile B set to zero. In (a), (b), (e) and (f ), the solid (dashed)
lines correspond to negative (positive) values. As discussed in Giannakis et al. (2009), accurate
numerical evaluation of some of the energy transfer rates can be problematic, especially when
a large polynomial degree is required for the spectral solution to (2.43) to converge. For this
reason, we have not been able to evaluate Γmech and Γem for Hartmann numbers as large as
103. Roundoff errors also limit the convergence of the eigenvalue for mode F to about five
significant digits when Ha becomes large in cases (ii)–(v). Apart from the Re(c) graph for (iii),
this level of numerical precision is not sufficient to continue the logarithmic plots in (a) and
(b) to Ha � 100, where both of |Im(c)| and |Re(c) − 1| become small compared to |c| ≈ 1. Q2
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is less than the free-surface steady-state velocity. The error is particularly small for995

the conducting-wall problem, since in that case the energy transfer to the modes996

via Maxwell stress, which is not captured by the inductionless scheme, is suppressed997

due to the nature of the boundary conditions. In contrast, when B is included,998

the current-interaction term ΓJ causes the total mechanical energy transfer rate999

Γmech := Γν +ΓR +ΓaU +ΓJ to remain positive for Hartmann numbers larger than the1000

Ha ≈ 9 value above which it becomes negative in inductionless and B = 0 problems.1001

The total electromagnetic energy transfer rate Γem := Γη +ΓM +ΓaJ , where the surface1002

term ΓaJ is appreciable and positive, also deviates markedly from its Ha dependence1003

in the inductionless limit.1004

In the insulating-wall example, the combined effect produces a more than twofold1005

increase of the Hartmann number required for instability suppression relative to1006

inductionless flow. Moreover, the modal energy in the strong-field limit, instead1007

of becoming almost exclusively gravitational, is split into an Ha-independent mix1008

between magnetic and surface parts. Although we have observed a scaling of the1009

form Eb/Ea ∝ Pm/Ga for Ha � 1, we have not been able to account for it by1010

invoking a work-balance argument (cf. § 4.2).1011

If now the wall is perfectly conducting, the current interaction term ΓJ becomes1012

sufficiently large so as to cause the growth rate Im(c)α to asymptote to a positive1013

value, rather than approach zero from below. In addition, the energy in the magnetic1014

degrees of freedom dominates, with both surface and kinetic contributions decaying1015

to zero. The greater influence of the steady-state current in problems with a perfectly1016

conducting wall is consistent with the fact that |B(z)| is of order unity throughout1017

the core of the flow domain, while it is of order 1/Ha when the wall is insulating (see1018

§ 2.4).1019

The data for ΓR and Γν in table 7 exhibit a particularly large discrepancy between1020

the non-zero-B problem with an insulating wall and its inductionless counterpart,1021

signalling that the Lorentz force associated with J causes significant changes in1022

the structure of the velocity eigenfunction û(z). Indeed, as illustrated in figure 13,1023

the perturbed velocity field of the full MHD problem bears little resemblance to the1024

inductionless examples in figure 9. In particular, instead of evolving towards a state1025

of uniform streamwise-velocity amplitude as Ha grows, |û(z)| and the kinetic energy1026

density Êu(z) develop a maximum in the wall region, where | J | is concentrated (see1027

figure 2). The increased eigenfunction curvature leads in turn to higher viscous and1028

resistive dissipation, but these are more than counter-balanced by positive current1029

interaction and by positive energy transfer due to Reynolds and Maxwell stresses. As1030

for the magnetic field eigenfunction b̂(z), its modulus varies by less than 10−2 over1031

the fluid domain, and since the modal wavenumber α = 0.002 is small, the energy of1032

the magnetic field penetrating into the exterior region, Eb′ (3.21), exceeds the internal1033

magnetic energy Eb (3.19) by two orders of magnitude (see table 7). We remark1034

that in problems with a perfectly conducting wall, where the current distribution1035

over the inner part of the domain is nearly uniform, û(z) is qualitatively similar to1036

the inductionless case, and b̂(z) varies nearly linearly from zero at the wall to its1037

free-surface value.1038

4.3.3. Travelling Alfvén modes1039

Having studied the behaviour of the least stable modes in some detail, we now1040

examine the influence of a small, but non-zero, magnetic Prandtl number on the1041

more stable modes. As illustrated by the spectra in figure 14 and table 8, computed1042

for Ha = 0.1 and Pm ∈ {10−5, 10−4}, when the applied magnetic field is weak,1043
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|(û(z)/û(0)| |(b̂(z) – b̂(0)) / b̂(0)| × 103

∠(b̂(z)/â)/π
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Figure 13. (a) Velocity eigenfunction, (b) magnetic field eigenfunction, (c) kinetic and
magnetic energy densities, (d ) current interaction, (e) viscous dissipation and Reynolds stress
(f ) and resistive dissipation and Maxwell stress, for mode F in insulating-wall problems
with Pm = 10−5, Ha ∈ {3, 10, 20, 40} and remaining flow parameters equal to those in the
inductionless problems in figure 9. In (a), (b), (e) and (f) the solid and dotted lines are associated
with the lower and upper horizontal axes, respectively. In order to better depict the peaks in

Êu(z), the corresponding axis has quartic scaling. Likewise, quadratic scaling has been used

for the z coordinate in (c)–(f), as well as for the axes for Γ̂ ν(z) and Γ̂ η(z).
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Figure 14. Eigenvalues of free-surface Hartmann flow with an insulating wall at Re = 7 × 105,
α = 2 × 10−3, Ga = 8.3 × 107, Ca = 0.07 and Ha = 0.1. The magnetic Prandtl number Pm
in (a) and (b) is 10−5 and 10−4, respectively. Mode M, plotted using a + marker, is singular
in the inductionless limit Pm ↘ 0, while mode F, plotted in boldface, is unstable in both
panels. Modes P1 and A2 in (a), plotted using * markers, become converted to modes L+ and
L− in figure 15 as the Hartmann number is increased. The dependence of this spectrum on
Pm ∈ [10−6, 10−4] is shown in movie 2, available with the online version of the paper.

c Ea/E Eb/E

Ha = 0.1, Pm = 10−5

1 F 1.01931082772748 × 100 + 1.87122221676069 × 10−2 i 3.82063 × 10−2 2.65603 × 10−4

2 P1 9.43120008162654 × 10−1 − 5.65860384497908 × 10−2 i 6.53040 × 10−3 4.87128 × 10−5

3 A1 1.28101973089488 × 10−1 − 7.85027707446042 × 10−2 i 1.61230 × 10−4 1.74331 × 10−6

4 P2 8.67716150616648 × 10−1 − 1.32222546160657 × 10−1 i 6.09816 × 10−4 6.65946 × 10−6

5 P3 7.92170269201228 × 10−1 − 2.07817958769442 × 10−1 i 1.14325 × 10−4 3.72558 × 10−6

6 A2 3.86411583077811 × 10−1 − 2.07964549091180 × 10−1 i 1.41756 × 10−4 2.47046 × 10−6

7 P4 7.16273931735328 × 10−1 − 2.81864800130393 × 10−1 i 2.31289 × 10−5 9.27739 × 10−6

8 A3 5.62415456020230 × 10−1 − 2.84607742157634 × 10−1 i 3.99484 × 10−5 4.07061 × 10−6

9 M 6.66774912099173 × 10−1 − 2.86025163476446 × 10−1 i 6.24179 × 10−7 9.74910 × 10−1

10 S1 6.72566612117371 × 10−1 − 3.53685916601131 × 10−1 i 3.85519 × 10−6 1.26283 × 10−6

Ha = 0.1, Pm = 10−4

1 F 1.01931125301428 × 100 + 1.87093734887185 × 10−2 i 3.82168 × 10−2 6.24640 × 10−5

2 M 6.66800739433602 × 10−1 − 2.97757500101643 × 10−2 i 1.47480 × 10−6 9.97323 × 10−1

3 P1 9.43117677138117 × 10−1 − 5.65832503068096 × 10−2 i 6.53056 × 10−3 1.04209 × 10−5

4 A1 1.28101057320598 × 10−1 − 7.85034486458773 × 10−2 i 1.61230 × 10−4 3.43338 × 10−7

5 P2 8.67714460364094 × 10−1 − 1.32221228532799 × 10−1 i 6.09793 × 10−4 1.03611 × 10−6

6 P3 7.92167689972354 × 10−1 − 2.07816923033732 × 10−1 i 1.14320 × 10−4 2.11886 × 10−7

7 A2 3.86416377565185 × 10−1 − 2.07965044026100 × 10−1 i 1.41753 × 10−4 2.75247 × 10−7

8 P4 7.16262532911781 × 10−1 − 2.81865240487700 × 10−1 i 2.31293 × 10−5 4.63160 × 10−8

9 A3 5.62410360672946 × 10−1 − 2.84606171228795 × 10−1 i 3.99490 × 10−5 7.99622 × 10−8

10 S1 6.72561149596221 × 10−1 − 3.53688962352034 × 10−1 i 3.85565 × 10−6 1.00596 × 10−8

Table 8. Complex phase velocity c, free-surface energy Ea and magnetic energy Eb of the 10
least stable modes of the spectra in figure 14. The energies Ea and Eb have been normalized
by the total energy E = Eu + Eb + Ea .
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free-surface flows with an insulating wall exhibit (in addition to the A, F, P and1044

S modes) a mode labelled M that is not present in inductionless flows. Mode M is1045

stable, and like S-family modes, its phase velocity is close to the mean steady-state1046

speed. However, it stands out from the remaining modes because of (i) the strong1047

Pm dependence of its decay rate, which decreases by an order of magnitude between1048

the Pm = 10−5 and Pm = 10−4 calculations in table 8 (the corresponding relative1049

variation for the A, F, P, and S modes is less than 10−4), and (ii) its mostly magnetic1050

energy content (e.g. in table 8, Eb/E ≈ 0.95 for mode M, whereas Eb/E � 10−4 for1051

modes in the A, F, P and S families). Although we have not confirmed this analytically,1052

numerical calculations strongly suggest that mode M is singular in the inductionless1053

limit Pm ↘ 0. In particular, as shown in movie 2, when Pm is increased from small1054

values the complex phase velocity of mode M is seen to approach the upper part of1055

the spectrum from arbitrarily small values of Im(c), moving along the S eigenvalue1056

branch. We remark, however, that the complex phase velocity does not cross the1057

Im(c) = 0 axis. Instead, if Pm is allowed to be of order unity, mode M eventually1058

participates in the formation of magnetic eigenvalue branches (Giannakis et al. 2009).1059

The existence of modes of magnetic origin (hence the designation M) in the1060

spectrum of the coupled OS and induction equations (2.43) is consistent with the fact1061

that the limit Pm ↘ 0 at fixed Ha , which as discussed in § 2.6 leads to the approximate1062

stability equation (2.46), is singular. (Effectively, the differential order of the stability1063

problem is reduced from six to four.) Modes of this type are also present in1064

channel Hartmann flows, as well as in test problems with B = 0. However, we1065

have found no evidence of mode M in numerical calculations with conducting1066

boundary conditions, which correlates with the absence of the γ
(M)
1 magnetic solution1067

in the large-wavelength approximations for conducting-wall problems in § A.2 of the1068

Appendix.1069

As shown in the spectra in figure 15, evaluated for insulating-wall problems with1070

Pm = 10−5, Ha ∈ {10, 20, 50} and otherwise the same parameters as the inductionless1071

calculations in figure 7, when the external magnetic field is of appreciable strength1072

the collapse of the A eigenvalue branch and the alignment of the P and S branches1073

observed in the inductionless limit (see § 4.2) are also present in the Pm > 0 problems.1074

In addition, according to the data in table 9, the magnetic energy for all but the first1075

handful of modes is relatively small (Eb/E � 10−1), and in those cases the accuracy1076

of the inductionless approximation is very acceptable. (For instance a comparison1077

with table 4 shows that the relative error for mode P4 at Ha = 10 is at the 1 %1078

level.) Still, as already discussed in § 4.3.1 and § 4.3.2, the non-zero-Pm spectra deviate1079

substantially from the corresponding inductionless ones in the behaviour of mode F,1080

whose main distinguishing features in figure 15 and table 9 in comparison with1081

figure 7 and table 4 are (i) sub-unity phase velocity C ≈ 0.9959 when Ha = 10, (ii)1082

positive growth rate in both of the Ha = 10 and Ha = 20 calculations and (iii)1083

magnetic-energy predominance for strong background fields (e.g. Eb/E ≈ 0.93 for1084

Ha = 50).1085

Aside from the discrepancies associated with mode F, however, the spectra in1086

figure 15 differ from those in figure 4 in that they contain two travelling modes,1087

labelled L− and L+, which have no counterparts in the inductionless limit. As1088

illustrated in movie 3, these modes are the outcome of a mode-conversion process,1089

whereby the weak-field modes A2 and P1 separate from the A and P eigenvalue1090

branches when Ha is increased from small values and move towards nearly symmetric1091

positions on the complex plane about Re(c) = 1. At the same time, mode M joins1092

the P eigenvalue branch and, having lost the majority of its magnetic energy, behaves1093
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Figure 15. Eigenvalues of free-surface Hartmann flow with an insulating wall at Re = 7 × 105,
α = 2 × 10−3, Pm = 10−5, Ga = 8.3 × 107, Ca = 0.07 and (a) Ha = 10, (b) Ha = 20 and (c)
Ha = 50. The modes labelled L− and L+, and plotted using * markers, are travelling Alfvén
waves and can be continuously traced to modes A2 and P1, respectively, as Ha ↘ 0. The mode
plotted using a + marker originates from mode M in figure 14(a). In (a) and (b), mode F,
plotted in boldface, is unstable. The evolution of this spectrum with Ha ∈ [0.1, 50] is shown
in movie 3, available with the online version of the paper.

in the same manner as the remaining P and S modes. A principal feature of the1094

L modes for sufficiently strong magnetic fields, which can be observed in the Ha = 201095

and Ha = 50 results in table 9, is a near equipartition between magnetic and kinetic1096

energies. Because of this, we classify these modes as ‘travelling Alfvén waves’. In1097

separate numerical calculations, we have confirmed that modes of this type are also1098
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c Ea/E Eb/E

Ha = 10, Pm = 10−5

1 F 9.95865078137089 × 10−1 + 1.63947948356842 × 10−2 i 6.67566 × 10−2 7.56599 × 10−1

2 P1 9.92557588155474 × 10−1 − 1.04442847126442 × 10−1 i 1.82412 × 10−3 1.03289 × 10−1

3 L+ 1.01939554477557 × 100 − 1.06858631729338 × 10−1 i 5.76706 × 10−3 3.85449 × 10−1

4 P2 9.77461544779890 × 10−1 − 1.55881324364227 × 10−1 i 6.76741 × 10−4 1.08003 × 10−1

5 L− 8.17555458976949 × 10−1 − 1.94975997718683 × 10−1 i 7.43663 × 10−4 2.66480 × 10−1

6 P3 9.61162906229426 × 10−1 − 2.14936006245129 × 10−1 i 1.26044 × 10−4 8.66194 × 10−2

7 P4 9 .39093462022514 × 10 −1 − 2 .82501396482664 × 10 −1 i 5 .08031 × 10 −6 3 .25970 × 10 −2

8 A1 4.14592505991546 × 10−1 − 3.33142243705258 × 10−1 i 7.03352 × 10−5 1.24080 × 10−2

9 P5 9.16439057608324 × 10−1 − 3.60617428043375 × 10−1 i 2.76783 × 10−6 7.44498 × 10−3

10 S1 9.05320512052477 × 10−1 − 4.51161148416211 × 10−1 i 1.69292 × 10−6 1.52332 × 10−3

Ha = 20, Pm = 10−5

1 F 1.00392370142334 × 100 + 4.62308174479437 × 10−3 i 5.41852 × 10−2 8.77046 × 10−1

2 L− 7.38547682046289 × 10−1 − 1.56955992195965 × 10−1 i 8.21253 × 10−4 4.47778 × 10−1

3 L+ 1.20624039578785 × 100 − 1.62495095508186 × 10−1 i 1.00742 × 10−3 5.53021 × 10−1

4 P1 9.96643310724506 × 10−1 − 3.05478418809574 × 10−1 i 2.85312 × 10−8 7.90718 × 10−4

5 P2 9.90773359402505 × 10−1 − 3.42351571140559 × 10−1 i 1.12321 × 10−7 1.41202 × 10−3

6 P3 9.82893615854751 × 10−1 − 3.95487920055681 × 10−1 i 3.08386 × 10−7 1.84037 × 10−3

7 P4 9 .73387208655838 × 10 −1 − 4 .64261831294372 × 10 −1 i 5 .33617 × 10 −7 1 .74777 × 10 −3

8 P5 9.62772461311780 × 10−1 − 5.48990582273123 × 10−1 i 6.23475 × 10−7 1.32879 × 10−3

9 A1 6.93299438967882 × 10−1 − 6.38530573016983 × 10−1 i 8.03501 × 10−6 9.71982 × 10−3

10 S1 9.52461437608548 × 10−1 − 6.50819443090838 × 10−1 i 5.46661 × 10−7 8.54110 × 10−4

Ha = 50, Pm = 10−5

1 F 1.00024009887062 × 100 − 7.84769189348587 × 10−5 i 6.17833 × 10−2 9.29735 × 10−1

2 L+ 1.68062858014303 × 100 − 1.61493055991922 × 10−1 i 1.67082 × 10−4 5.14154 × 10−1

3 L− 2.89175320132634 × 10−1 − 1.64256263206813 × 10−1 i 1.57691 × 10−4 4.87064 × 10−1

4 P1 9.99199429127421 × 10−1 − 1.80434774096787 × 100 i 1.82872 × 10−10 1.94749 × 10−3

5 P2 9.97091976769849 × 10−1 − 1.83142407634326 × 100 i 7.93664 × 10−10 7.16630 × 10−4

6 P3 9.94227660233984 × 10−1 − 1.87446928135769 × 100 i 1.52677 × 10−9 3.71281 × 10−4

7 P4 9 .90706905162818 × 10 1 − 1 .93185106397859 × 10 0 i 2 .45478 × 10 −9 2 .35469 × 10 −4

8 P5 9.86809861524976 × 10−1 − 2.00299291310038 × 100 i 3.38590 × 10−9 1.68562 × 10−4

9 P6 9.82936143590023 × 10−1 − 2.08763002827334 × 100 i 4.23074 × 10−9 1.30181 × 10−4

10 S1 9.79496738581810 × 10−1 − 2.18575887355621 × 100 i 4.81819 × 10−9 1.05130 × 10−4

Table 9. Complex phase velocity c, surface energy Ea and magnetic energy Eb of the 10 least
stable modes of the spectra in figure 15. The energies Ea and Eb have been normalized by
the total energy E = Eu + Eb + Ea . If Ha is decreased to 0.1, mode P4 (in figure 15, plotted
using a + marker) can be continuously traced to mode M in the Pm = 10−5 part of table 8.
The average steady-state velocity 〈U〉 is, in accordance with (2.29), 0.9001, 0.9500 and 0.9800,
respectively for Ha = 10, 20 and 50. Due to the alignment of the P and S branches, the
classification of the sixth least stable mode for Ha = 10, the eighth least stable mode for
Ha = 20 and the ninth least stable mode for Ha = 50 as members of the P family is somewhat
arbitrary; these modes could equally be treated as members of the S branch.

Q3

part of the spectrum when the background fluid is at rest. In channel problems with1099

insulating walls, the pair of travelling waves becomes replaced by a single frozen-in1100

magnetic mode (Betchov & Criminale 1967, § IX), whose phase velocity and kinetic1101

energy are nearly equal to unity and zero, respectively. However, as with mode M,1102

both of the travelling and frozen-in Alfvén modes are removed from the spectrum1103

when conducting boundary conditions are enforced.1104

When a steady-state flow is present, the upstream-propagating wave L− may become1105

unstable if the Alfvén number Al = RePm1/2/Ha of the flow is sufficiently large. This1106
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Ha = 0.02 Ha = 1

F M P1 F M P1

Γ 8.449 × 10−6 −8.784 × 10−6 −2.535 × 10−5 7.910 × 10−6 −8.609 × 10−6 −2.429 × 10−5

C − 1 8.458 × 10−3 −3.333 × 10−1 −2.536 × 10−2 8.006 × 10−3 −3.226 × 10−1 −2.429 × 10−2

Eu/E 9.987 × 10−1 7.193 × 10−5 9.998 × 10−1 9.920 × 10−1 1.524 × 10−1 9.988 × 10−1

Eb/E 2.307 × 10−6 6.747 × 10−1 3.411 × 10−7 6.130 × 10−3 5.661 × 10−1 9.000 × 10−4

Eb+ 6.572 × 10−8 1.626 × 10−1 1.087 × 10−8 1.848 × 10−4 1.408 × 10−1 3.032 × 10−5

Eb− 6.366 × 10−8 1.626 × 10−1 1.075 × 10−8 1.793 × 10−4 1.407 × 10−1 2.999 × 10−5

Ea/E 1.328 × 10−3 3.893 × 10−10 2.211 × 10−4 1.496 × 10−3 8.936 × 10−7 2.467 × 10−4

ΓR −1.923 × 10−6 −3.945 × 10−9 −8.147 × 10−6 −1.816 × 10−6 −8.071 × 10−6 −7.819 × 10−6

ΓM 9.048 × 10−9 1.012 × 10−2 1.441 × 10−9 2.432 × 10−5 8.562 × 10−3 3.842 × 10−6

ΓJ −1.067 × 10−10 2.036 × 10−9 5.359 × 10−11 −2.770 × 10−7 4.201 × 10−6 1.391 × 10−7

Γν −2.573 × 10−5 −7.107 × 10−10 −1.119 × 10−5 −2.493 × 10−5 −1.509 × 10−6 −1.070 × 10−5

Γη −9.225 × 10−9 −1.013 × 10−2 −1.424 × 10−9 −2.477 × 10−5 −8.557 × 10−3 −3.795 × 10−6

ΓaU 3.610 × 10−5 −8.298 × 10−12 −6.012 × 10−6 3.501 × 10−5 −1.838 × 10−8 −5.771 × 10−6

ΓaJ 1.465 × 10−10 −3.925 × 10−9 −7.276 × 10−11 3.762 × 10−7 −8.070 × 10−6 −1.877 × 10−7

Γmech 8.449 × 10−6 −2.627 × 10−9 −2.535 × 10−5 7.986 × 10−6 −5.397 × 10−6 −2.415 × 10−5

Γem −3.046 × 10−11 −8.781 × 10−6 −5.613 × 10−11 −7.530 × 10−8 −3.211 × 10−6 −1.399 × 10−7

Ha = 15 Ha = 200

L+ L− F L+ L− F

Γ −3.265 × 10−5 −3.101 × 10−6 2.507 × 10−5 −1.578 × 10−5 −1.595 × 10−5 −8.730 × 10−9

C − 1 2.577 × 10−2 −7.013 × 10−2 −2.858 × 10−2 1.163 × 10−1 −1.243 × 10−1 5.599 × 10−4

Eu/E 9.315 × 10−1 9.569 × 10−1 9.159 × 10−1 4.728 × 10−1 5.128 × 10−1 6.999 × 10−2

Eb/E 3.575 × 10−2 1.527 × 10−2 4.092 × 10−2 1.532 × 10−3 1.196 × 10−3 2.653 × 10−3

Eb+ 1.603 × 10−2 1.364 × 10−2 2.122 × 10−2 2.628 × 10−1 2.430 × 10−1 4.640 × 10−1

Eb− 1.614 × 10−2 1.394 × 10−2 2.106 × 10−2 2.628 × 10−1 2.430 × 10−1 4.632 × 10−1

Ea/E 5.779 × 10−4 2.470 × 10−4 8.664 × 10−4 5.425 × 10−5 5.015 × 10−5 1.214 × 10−4

ΓR 2.294 × 10−6 6.140 × 10−6 1.046 × 10−5 −8.344 × 10−8 −1.100 × 10−7 1.733 × 10−7

ΓM 3.917 × 10−4 2.810 × 10−4 4.631 × 10−4 2.859 × 10−4 1.618 × 10−4 4.108 × 10−4

ΓJ −1.634 × 10−5 1.662 × 10−5 3.234 × 10−5 1.741 × 10−4 2.635 × 10−4 3.999 × 10−4

Γν −9.919 × 10−6 −1.145 × 10−5 −1.306 × 10−5 −2.869 × 10−4 −1.651 × 10−4 −4.010 × 10−4

Γη −4.178 × 10−4 −2.797 × 10−4 −4.406 × 10−4 −2.950 × 10−4 −1.709 × 10−4 −4.108 × 10−4

ΓaU 2.609 × 10−10 −2.344 × 10−10 −3.239 × 10−10 5.662 × 10−89 −6.087 × 10−89 −3.988 × 10−90

ΓaJ 1.746 × 10−5 −1.577 × 10−5 −2.710 × 10−5 1.063 × 10−4 −1.051 × 10−4 9.002 × 10−7

Γmech −2.396 × 10−5 1.131 × 10−5 2.975 × 10−5 −1.129 × 10−4 9.830 × 10−5 −9.430 × 10−7

Γem −8.692 × 10−6 −1.442 × 10−5 −4.675 × 10−6 9.715 × 10−5 −1.143 × 10−4 9.327 × 10−7

Table 10. Growth rate and phase velocity, energy components and energy transfer rates for
modes F, L−, L+, M and P1 in figure 16 for representative values of the Hartmann number in
the interval [0.02, 200]. For the reasons stated in the caption to figure 12, the relative numerical
error in the energy-transfer-rate calculations for mode F at Ha = 200 is of order 0.3.

situation is illustrated by the eigenvalue and energy calculations in figure 16 and1107

table 10, evaluated at Re = 6.3 × 106, α = 10−4, Pm = 10−4 and Ha ∈ [10−2, 103],1108

where the latter Hartmann-number interval corresponds to an Alfvén number decrease1109

from 6.3×106 (Ha = 10−2) to 63 (Ha = 103). The resulting evolution of the eigenvalues1110

in the complex-c plane is shown in movie 4.1111

When the Hartmann number is large (Ha � 200), the travelling Alfvén modes are1112

clearly distinguishable by the linear Ha dependence of their decay rate |Im(c)α| and1113

of their phase velocity relative to the free-surface steady-state velocity, Re(c) − 1.1114
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Figure 16. Complex phase velocity c, magnetic and surface energies Eb and Ea (normalized
by the total energy E = Eu + Eb + Ea) and mechanical and electromagnetic energy transfer
rates Γmech and Γem for the 10 least stable modes of free-surface Hartmann flow with insulating
boundary conditions at Re = 6.3 × 106, α = 10−4, Pm = 10−4, Ga = 8.3 × 107, Ca = 0.07 and
Ha ∈ [10−2, 103]. In (a), (b), (e) and (f ), the solid and dashed lines respectively correspond
to negative and positive values. The weak-field (Ha = 0.1) modes F, M and P1 respectively
become converted to modes L+, L− and F as Ha grows. For Ha � 50, the Re(c) − 1, Eb/E
and Γmech results for modes in the A, P and S families become highly oscillatory. In order to
prevent overlapping plotted lines from obscuring this oscillatory behaviour, the Re(c)−1 plots
for modes P2 and higher (in the sense of the growth-rate ordering at Ha � 1) were terminated
at values of the Hartmann number less than 1000. The corresponding Ha evolution of this
spectrum in the complex plane is shown in movie 4, available with the online version of the
paper.
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The nearly equal split between kinetic and magnetic energies remarked upon above1115

is also evident, both in figure 16 and in the Ha = 200 results in table 10. The1116

latter also indicate that in light of the smallness of the wavenumber employed in the1117

calculation, the magnetic energy contained in the exterior region exceeds the internal1118

one by more than two orders of magnitude. Interestingly, a duality between the1119

mechanical and electromagnetic energy transfer rates appears to apply between the1120

downstream and upstream waves, in the sense that the mechanical energy transfer rate1121

Γmech = −1.129 × 10−4 for mode L+ (the downstream-propagating mode) is nearly1122

equal to the Γem term for mode L−, and likewise, the Γmech = 9.830 × 10−5 term for1123

mode L− is close to the electromagnetic energy transfer rate Γem for mode L+. In1124

both cases, however, the energy transfer rates due to Maxwell stress and the current1125

interaction, respectively ΓM and ΓJ , as well as the surface term ΓaJ are positive,1126

whereas the energy transfer rate due to Reynolds stress, ΓR , is negative.1127

At smaller Hartmann numbers (equivalently, larger Alfvén numbers), the upstream-1128

propagating mode tends to be advected along the direction of the basic flow, and1129

for 10 � Ha � 20, the positive mechanical energy transfer rate, driven in part by1130

positive Reynolds stress (see the Ha = 15 calculation in table 10), exceeds the1131

rate of energy dissipated electromagnetically, resulting in an instability. As Ha is1132

further decreased, mode L− is stabilized and becomes converted to mode M; i.e. its1133

energy becomes predominantly magnetic, and its phase velocity C approaches the1134

mean value of the steady-state flow. This mode conversion is different from the one1135

observed in figure 15 and movie 3, where mode L− develops from weak-field mode A2,1136

indicating that the precursors of the Alfvén modes in the weak-field spectrum are not1137

universal.1138

As for the downstream-propagating wave, L+, instead of joining the P eigenvalue1139

branch when Ha is decreased (which would be the case for the flow parameters in1140

figure 15), becomes converted around Ha = 3 to mode F; i.e. it has greater than1141

unity phase velocity and for the chosen values of the Reynolds and Galilei numbers,1142

is unstable for Ha = 0. At the same time, the strong-field (Ha � 80) mode labelled F1143

in figure 16, which exhibits the asymptotic neutrality that we ascribed to mode F in1144

figure 8, turns into mode P1. This exchange of identity between modes F and P1 takes1145

place at Reynolds numbers greater than the one employed in our earlier examples1146

at (Re, α) = (7 × 105, 2 × 10−3) and, as can be seen in figure 16 and movie 4, is1147

accompanied by a small Hartmann-number interval in which both modes are stable.1148

The latter gives rise to regions of stability in the (Re, α) plane which would contain1149

unstable modes in the inductionless limit (see figure 10).1150

The results for mode F in figure 16 also show that the |Γ | ∝ Ha−2 strong-field1151

scaling observed in inductionless problems (e.g. figure 8) does not necessarily apply1152

in the non-zero-Pm flows. In particular, while no such evidence was observed in the1153

calculations in figure 13 for (Re, α, Pm) = (7 × 105, 2 × 10−3, 10−5), the growth rate1154

of mode F for (Re, α, Pm) = (6.3 × 106, 10−4, 10−4) follows an inverse-cubic decrease.1155

This is most likely caused by the steady-state current, since, as we have numerically1156

confirmed, setting B to zero restores the |Γ | ∝ Ha−2 scaling.1157

Before closing, we note that the A, P and S modes that do not participate in the1158

modal interactions described above also exhibit new aspects of behaviour compared to1159

inductionless problems. In particular, as the magnetic field strength grows, their phase1160

velocity experiences a series of oscillations about C = 1, of diminishing amplitude1161

(cf. the inductionless calculations in figure 8, where C monotonically approaches1162

unity from below), and so does their magnetic energy as it settles towards an Ha-1163

independent equilibrium value. An intricate pattern of oscillation is also observed for1164
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the mechanical energy dissipation rate −Γmech , which now exhibits an increasing trend1165

with Ha � 1 instead of asymptoting towards Ha-independent values. However, at1166

least for the examined Hartmann-number interval, |Γmech | remains small compared to1167

the rate of electromagnetic energy dissipation −Γem, which, dominated by the resistive1168

term Γη, grows quadratically with Ha . As a result, the decay rate −Γ = −(Γmech +Γem)1169

of the A, P and S modes exhibits to a good approximation a Γ ∝ Ha2 scaling for1170

strong applied fields, as it does in the inductionless limit.1171

5. Conclusions1172

A numerical investigation of the stability of temporal normal modes of free-1173

surface Hartmann flow at low magnetic Prandtl numbers (Pm � 10−4, including the1174

inductionless limit Pm ↘ 0) has been presented. Our main objective has been to1175

study the influence of a flow-normal magnetic field (of associated Hartmann number1176

Ha � 1000) on the soft and hard instability modes present in non-MHD flow down1177

an inclined plane (Yih 1963, 1969; De Bruin 1974; Floryan et al. 1987), imposing1178

either insulating or perfectly conducting boundary conditions at the wall.1179

We have confirmed that the Squire transformation for MHD (Betchov & Criminale1180

1967) is compatible with the kinematic, stress and magnetic field continuity boundary1181

conditions for free-surface problems, but we found that unless the flow is driven1182

at constant capillary and Galilei numbers, respectively parameterizing the surface1183

tension and the flow-normal gravitational force, the onset of instability as the1184

Reynolds number Re grows is not necessarily governed by a two-dimensional1185

mode.1186

In inductionless flows, where the magnetic field is treated as a constant background1187

variable, we have observed that the critical Reynolds number Rec of both of the hard1188

and soft instability modes increases monotonically with Ha . In particular, except for1189

applied fields sufficiently weak for gravity to dominate over Lorentz forces, the hard1190

mode’s critical Reynolds number as well as its critical wavenumber αc and phase1191

velocity Cc were found to be very close to the corresponding parameters of the even1192

unstable mode in channel Hartmann flow (Takashima 1996), reflecting the common,1193

critical layer, nature of these two instabilities. In fact, for sufficiently large Hartmann1194

numbers, the critical Reynolds number of both is well approximated by the linear1195

power law Rec(Ha) = 48 250 Ha computed for the critical Reynolds number of the1196

unbounded Hartmann layer (Lingwood & Alboussiere 1999).1197

As for the soft mode, our numerical calculations have yielded non-zero values1198

for its critical wavenumber αc (here α denotes the wavenumber) in inductionless1199

problems. Nevertheless, the corresponding values of the critical Reynolds number1200

and phase velocity were found to be in moderately good agreement with closed-1201

form expressions derived under the assumption that αc is zero (Hsieh 1965; Gupta1202

& Rai 1968; Korsunsky 1999). In particular, using the Galilei number Ga to1203

parameterize the normal gravitational force, from the analytical results it follows that1204

Rec ∼ (Ga/Ha)1/2 exp(Ha) increases exponentially with Ha � 1, and Cc ∼ 1+sech(Ha)1205

decreases from its non-MHD value of twice the free-surface steady-state velocity to1206

unity.1207

As is also the case in channel flow (Takashima 1996), we recorded little variation in1208

the hard mode’s critical parameters between the small-Pm problems with insulating1209

boundary conditions and the corresponding inductionless flows. On the other hand,1210

we encountered considerable differences in the stability properties of the soft mode,1211

manifested in the structure of eigenvalue contours in the (Re, α) plane, as well1212
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as in the dependence of its critical parameters on Ha and Pm . Specifically, in1213

problems with an insulating wall, our numerical results, supported by large-wavelength1214

asymptotics, indicate that the αc = 0 axis ceases to be part of the soft mode’s1215

neutral-stability curve, and the exponential growth of the critical Reynolds number1216

becomes, for sufficiently large Ha , suppressed to a sub-linearly increasing function.1217

When perfectly conducting boundary conditions are imposed, Rec ∼ (Ga/Pm)1/2Ha−1
1218

becomes a decreasing function of the Hartmann number.1219

The observed Pm sensitivity of the soft instability was attributed to the strong- Q41220
field behaviour of the participating inductionless mode (here called mode F), which,1221

even though stabilized by the magnetic field, approaches neutral stability as Ha1222

grows and whose energy energy content becomes almost exclusively gravitational.1223

In particular, its decay rate and kinetic energy respectively decrease like Ha−2 and1224

Ha−4, where the latter scaling is consistent with a work balance between gravitational1225

and Lorentz forces. The resulting near equilibrium is distinct from the quadratically1226

increasing Lorentz damping experienced by the shear modes in the A, P and S1227

families (labelled according to the convention of Mack 1976). In particular, it renders1228

mode F susceptible to effects associated the response of the magnetic field to the1229

flow (neglected in the inductionless limit), even when the magnetic diffusivity of the1230

working fluid is large.1231

Our analysis has identified two ways that non-zero magnetic field perturbations1232

influence the soft instability, both of which depend strongly on the wall boundary1233

conditions. The first is through the component RePm J × b of the Lorentz force1234

associated with the steady-state current J and the perturbed magnetic field b. That1235

force, which vanishes in the inductionless limit, results in a positive net energy1236

transfer to mode F, leading in turn to the observed deviation of the critical Reynolds1237

number from its behaviour in the inductionless limit. The fact that J depends,1238

through the boundary conditions, on the wall conductivity, accounts for the different1239

Rec results between insulating and conducting-wall problems. In particular, when1240

perfectly conducting boundary conditions are enforced, the magnitude of J increases1241

without bound with Ha , and the resulting energy transfer to mode F causes Rec(Ha)1242

to become a decreasing function. On the other hand, in insulating-wall problems1243

J becomes constant throughout the inner part of the fluid domain, which is1244

consistent with the comparatively milder modification of the soft mode’s critical1245

parameters. In this case, however, the boundary conditions are compatible with a1246

stable, large-wavelength mode, which, as we have confirmed by means of asymptotic1247

approximations, is singular in the inductionless limit Pm ↘ 0. When Pm is non-zero1248

this magnetic mode couples with mode F, causing the growth rate of the latter to1249

become negative for sufficiently small α, irrespective of the value of the Reynolds1250

number. The resulting large-wavelength instability suppression for all Re is the second1251

major influence of non-zero magnetic field perturbations on the soft instability.1252

As with the effects associated with J , it too depends strongly on the boundary1253

conditions. That is the magnetic mode is absent from the spectrum when perfectly1254

conducting boundary conditions are imposed, and in the same manner as inductionless1255

flow, (for fixed Re >Reb) the soft instability takes place for arbitrarily small1256

wavenumbers.1257

Besides the large-wavelength magnetic mode, the spectrum of free-surface1258

Hartmann flow with an insulating wall was found to contain a pair of travelling1259

Alfvén waves, characterized by a near equipartition of the modal energy between1260

the kinetic and magnetic degrees of freedom. At sufficiently high Alfvén numbers,1261

the upstream-propagating wave undergoes an instability where both Reynolds and1262



50 D. Giannakis, R. Rosner and P. F. Fischer

Maxwell stresses are positive. Frozen-in analogues of the travelling Alfvén modes1263

(in the sense described by Betchov & Criminale 1967) were encountered in channel1264

Hartmann flow with insulating walls, but they are absent from conducting-wall1265

problems in both free-surface and channel geometries.1266

To conclude, the analysis presented in this paper highlights the important1267

role played by the magnetic field dynamics and boundary conditions in free-1268

surface Hartmann flow and identifies potential shortcomings of the inductionless1269

approximation. Future work will explore signatures of departure from inductionless1270

behaviour in fully nonlinear time-dependent simulations of free-surface MHD flows1271

and in experiments (Nornberg et al. 2008) currently underway at Princeton Plasma1272

Physics Laboratory.1273
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Appendix. Large-wavelength approximations1281

A.1. Non-MHD and inductionless problems1282

A.1.1. Formulation1283

In non-MHD and inductionless free-surface problems, the Reynolds number Reb1284

at the bifurcation point (Reb, 0) of the soft mode’s neutral-stability curve, as well as1285

the corresponding phase velocity Cb, can be evaluated in closed form using regular1286

perturbation theory about α = 0. Following the standard approach in the literature1287

(e.g. Yih 1963, 1969; Hsieh 1965; Ladikov 1966; Gupta & Rai 1968; Smith &1288

Davis 1982), we start with the expansions û(z) = u0(z) + αu1(z) + α2u2(z) + O(α3),1289

â = a0 +αa1 +α2a2 +O(α3) and γ = γ0 +αγ1 +α2γ2 +O(α3), which, when substituted1290

into the modified OS equation (2.46), lead to a series of ordinary differential equations1291

of the form1292

D4un + μ2D2un = sn, (A 1)

where n = 0, 1, 2, . . . and μ2 := −(H 2
z + Reγ0 ). Here the source terms sn vanish for1293

n = 0 and depend on the solutions up to order n − 1 for n � 1. In particular, for the1294

first two orders we have1295

s1 := Re(γ1 + iU )D2u0 − iRe(D2U )u0 + 2HxHzDu0,

s2 := Re(γ1 + iU )D2u1 − iRe(D2U )u1 + 4HxHzDu1

+ (Reγ2 + 2)D2u0 − (H 2
x + Reγ0)u1.

(A 2)

Similarly, the five boundary conditions (2.48a–c) and (2.52) lead to1296

un(−1) = Dun(−1) = 0, D2un(0) = S(3)
n , (A 3a, b)

D3un(0) − μ2Dun(0) = S(4)
n , un(0) − γ0an = S(5)

n , (A 3c, d )
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where S
(3)
0 , . . . , S

(5)
0 vanish and1297

S
(3)
1 := iD2U (0)a0, S

(3)
2 := iD2U (0)a1 − u0(0),

S
(4)
1 := Re(γ1 + iU (0))Du0(0) + i(HxHz − ReDU (0))u0(0),

S
(4)
2 := Re(γ1 + iU (0))Du1(0) + i(HxHz − ReDU (0))u1(0)

+ (3 + Reγ2)Du0(0) + GaRe−1a0,

S
(5)
1 := (γ1 + iU (0))a0, S

(5)
2 := (γ1 + iU (0))a1 + a0γ2.

(A 4)

We express the general solution to (A 1) as1298

un =

3∑
i=0

Kniu
(h)
i + u(p)

n , (A 5)

where u
(h)
i are four linearly independent functions satisfying D4u

(h)
i + μ2D2u

(h)
i = 0;1299

Kni are constants; and u(p)
n (z) are particular solutions associated with the source terms1300

sn. The constants Kni and the expansion coefficients an for the free-surface oscillation1301

amplitude are to be determined by systems of algebraic equations of the form1302

A0wn = tn (A 6)

that follow by substituting for un in the boundary conditions (A 3) using (A 5). Here1303

A0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u
(h)
0 (−1) . . . u

(h)
3 (−1) 0

Du
(h)
0 (−1) . . . Du

(h)
3 (−1) 0

D2u
(h)
0 (0) . . . D2u

(h)
3 (0) 0

(D3 − μ2)u(h)
0 (0) . . . (D3 − μ2)u(h)

3 (0) 0

u
(h)
0 (0) . . . u

(h)
3 (0) γ0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A 7)

is a 5 × 5 matrix acting on five-element column vectors wn := (Kn0, . . . , Kn3, an)
T.1304

Also, the column vectors tn, which vanish for n = 0, are given by1305

tn :=

⎛⎜⎜⎜⎜⎜⎝
−u(p)

n (−1)

−Du(p)
n (−1)

S(3)
n − D2u(p)

n (0)

S(4)
n − (D3 − μ2D)u(p)

n (0)

S(5)
n − u(p)

n (0)

⎞⎟⎟⎟⎟⎟⎠ (A 8)

for n � 1. Note that A0 is generally a nonlinear function of γ0, while the source1306

vectors tn are linear functions of γn.1307

Assuming that A0 has a q0-dimensional right nullspace, denoted by ker(A0) (as1308

discussed below, γ0 will be chosen such that ker(A0) is non-trivial), the solution1309

to (A 6) can be expressed as1310

wn = RA0
Πn + w(p)

n , (A 9)

where RA0
is a 5 × q0 matrix whose columns form a basis for ker(A0); Πn is a1311

q0-dimensional column vector of free parameters; and w(p)
n is a particular solution1312

associated with the source term tn. Therefore, introducing the notation vn := (un, an)
T1313

and v(p)
n := (u(p)

n , 0)T, as well as the matrix1314

M :=

(
u

(h)
0 · · · u

(h)
3 0

0 · · · 0 1

)
, (A 10)
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the solution for the velocity field and the free-surface oscillation amplitude at nth1315

order in perturbation theory becomes1316

vn = M RA0
Πn + M w(p)

n + v(p)
n . (A 11)

In what follows, we choose the homogeneous solutions

u
(h)
0 := 1, u

(h)
1 := z, u

(h)
2 := (1 − cos(μz))/μ2, u

(h)
3 := (μz − sin(μz))/μ3, (A 12)

all of which are well behaved in the limit μ → 0, giving, upon substitution into (A 7),1317

A0 =

⎛⎜⎜⎜⎝
1 −1 (1 − cosμ)/μ2 (sin μ − μ)/μ3 0
0 1 − sinμ/μ (1 − cosμ)/μ2 0
0 0 1 0 0
0 μ2 0 1 0
1 0 0 0 −γ0

⎞⎟⎟⎟⎠ . (A 13)

At zeroth order, the homogeneous problem A0w0 = 0 has a non-trivial solution1318

only if A0 has a non-trivial nullspace or, equivalently,1319

det(A0) = cos(μ)γ0 = 0. (A 14)

The equation above has two distinct classes of roots, given by γ0 = 0 and γ0 =1320

−(H 2
z +(2n+1)2π2/4), where n = 0, 1, 2, . . . . Among these, only the zero solution can1321

potentially be connected to a large-wavelength unstable mode, since the eigenvalues1322

associated with the first class of roots approach zero from below as α ↘ 0. Setting1323

therefore γ0 = 0 equips A0 with a one-dimensional nullspace spanned by the column1324

vector ξ := (0, 0, 0, 0, 1)T. Thus, the parameter vectors Πn become scalars, playing1325

the role of normalization constants, and through (A 11), we obtain v0 = (u0, a0) =1326

Π0(0, 1). We remark that channel problems do not admit asymptotically neutral1327

solutions as α ↘ 0; in this case det(A0) = 4(sin(μ) − μ cos(μ))/μ4 tends to 4/3 in the1328

limit γ0 → 0.1329

At higher orders in α one has to find solutions to inhomogeneous systems of1330

equations of the form (A 6). Here we will outline an inductive procedure which, given1331

a zeroth-order solution, can be applied to obtain solutions at successively higher orders1332

in α and can also be generalized to treat the coupled differential equations (2.43)1333

governing the non-zero-Pm problems (see § A.2).1334

First, assume that the eigenvalue coefficients γ0, . . . , γn−1 and the corresponding1335

eigenvectors v0, . . . , vn−1 have been evaluated to some order n − 1, where n � 1.1336

Moreover, assume that {vi}n−1
i=0 are linear and homogeneous functions of q0 free1337

parameters Πn−1,1, . . . , Πn−1,q0
, i.e.1338

vi = Di,n−1Πn−1 (A 15)

for 2 × q0 matrices D0,n−1, . . . and Dn−1,n−1 and a q0-dimensional column vector1339

Πn−1 := (Πn−1,1, . . . , Πn−1,q0
)T. Under these conditions, the particular solution u(p)

n ,1340

the boundary-condition source terms S(1)
n , . . . , S(5)

n and, by construction, the elements1341

of tn at order n are also homogeneous linear functions of {Πn−1,i}q0

i=1. That is we can1342

write1343

tn = TnΠn−1, (A 16)

where Tn is a 5 × q0 matrix.1344

In general, a solution wn to (A 6) will only exist if tn lies in the range of A0, denoted1345

by ran(A0). According to the fundamental theorem of linear algebra (e.g. Strang1346

2005), ran(A0) is the orthogonal complement, in the sense of the Euclidean inner1347
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product, of the left nullspace of A0, which we denote by ker(AT
0 ). Thus, noting that1348

ker(AT
0 ) is q0-dimensional (this is a further consequence of the fundamental theorem),1349

a solution to (A 6) exists if and only if L T
A0

tn = 0, where L A0
is a 5×q0 matrix whose1350

columns form a basis of ker(AT
0 ). It therefore follows from (A 16) that a solvability1351

condition for (A 6) is that the q0 × q0 matrix An := LT
A0

Tn has a non-trivial nullspace,1352

i.e. det(An) = 0. Since det(An) is a polynomial in γn of degree no greater than q01353

(recall that the elements of tn depend linearly on γn), the latter equation yields up to1354

q0 distinct solutions for the nth order expansion coefficient γn.1355

Denoting the dimension of ker(An) corresponding to a given solution for γn by1356

qn � q0 (the procedure can be repeated for each of the roots of det(An) = 0), we now1357

express the parameter vector Πn−1 as1358

Πn−1 = RAn
Π̃n, (A 17)

where RAn
is a q0 × qn matrix whose columns are basis vectors for ker(An) and1359

Π̃n := (Π̃n,1, . . . , Π̃n,qn
)T is an updated vector of free parameters in the solution. We1360

note that the column rank of the q0 ×qn matrix RAn
is qn by construction. (Its columns1361

are linearly independent vectors.) Moreover, because the row rank and the column1362

rank of any matrix are equal, its row space (i.e. ran(RT
An

)) is qn-dimensional, and its1363

left nullspace ker(RT
An

) is (q0 − qn)-dimensional.1364

Upon substitution into (A 15), (A 17) leads potentially to a decrease in the number1365

of degrees of freedom in the eigenfunctions of order up to n − 1, as well as in1366

w(p)
n (through its dependence on tn), from q0 to qn. Moreover, since the particular1367

solution u(p)
n to (A 1) also depends linearly and homogeneously on Π̃n, it is possible1368

to recast (A 11) as1369

vn = M RA0
Π ′

n + D̃nΠ̃n, (A 18)

where Π ′
n is a (provisional) q0-dimensional column vector of free parameters and D̃n1370

is a 2 × qn matrix such that D̃ nΠ̃n = M w(p)
n + v(p)

n . Although (A 18) may contain up1371

to q0 + qn arbitrary constants, the part of Π ′
n that is parallel to Πn−1 can be set to1372

zero, since its only effect would be a renormalization of the lower-order solutions. We1373

therefore require that RT
An

Π ′
n vanishes or, equivalently,1374

Π ′
n = EnΠ̂n, (A 19)

where En is a q0 × (q0 − qn) matrix whose columns form a basis of the left nullspace1375

of RAn
and Π̂n is a (q0 − qn)-dimensional column vector. If q0 happens to equal1376

unity, one can set Π ′
n equal to zero. Inserting (A 19) into (A 18), we then obtain1377

vn = D̂nΠ̂n + D̃nΠ̃n, where D̂n := M RA0
En, or1378

vn = Dn,nΠn, (A 20)

where Dn,n := (D̂n, D̃n) and Πn := (Π̂
T

n , Π̃
T

n )T are a 2×q0 matrix and a q0-dimensional1379

column vector, respectively. The lower-order solutions can also be written in terms of1380

Πn using1381

vi = Di,nΠn, Di,n := (0 2×(q0−qn), Di,n−1RAn
), i = 0, . . . , n − 1, (A 21)

where 0 2×(q0−qn) denotes the zero matrix of size 2 × (q0 − qn).1382

The matrices D0,n, . . . , Dn,n fully specify the perturbative expansion to nth order,1383

which, as assumed above, is a linear homogeneous function of q0 parameters. The1384

procedure can be repeated for successively higher orders in α, but since the solutions1385

for the expansion coefficients rapidly become complicated beyond first order, it is1386
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convenient to implement it in a symbolic-mathematics programming language so as1387

to minimize effort and error probability.1388

A.1.2. Results at first and second orders1389

We now apply the procedure described in § A.1.1 to evaluate the first- and second-1390

order corrections to the zeroth-order solution (γ0, u0, a0) = (0, 0, Π0). Setting U (z)1391

equal to the Hartmann velocity profile ((2.26a) with C0 = C1 = 0) and the streamwise1392

component of the applied magnetic field equal to zero (i.e. Hx = 0 and Hz = Ha)1393

the first-order expansion terms for the eigenvalue and the velocity eigenfunction are1394

found to be1395

iγ1 = 1+sech(Ha), u1(z) = −iΠ0 sech(Ha) sinh2(Ha(1+z)/2)/ sinh2(Ha/2), (A 22)

while the coefficient for the free-surface amplitude a1 vanishes. We remark that1396

since γ1 is purely imaginary, the α = 0 axis is part of the neutral-stability curve1397

0 = Im(c) = Re(γ1) + αRe(γ2) + O(α2) in the (Re, α) plane. Moreover, the leading-1398

order phase velocity C0 := iγ1 is a monotonically decreasing function of the Hartmann1399

number, with C0 ↘ 1 as Ha → ∞. As for the eigenfunction u1(z), it varies exponentially1400

with the flow-normal coordinate, and like the Hartmann velocity profile, it possesses a1401

boundary layer of thickness O(1/Ha) near the no-slip wall. In the vanishing magnetic1402

field limit (Ha ↘ 0), C0 is twice the steady-state velocity at the free surface and u11403

reduces to the quadratic function u1(z) = −iΠ0(1 + z)2, as computed by Yih (1963,1404

1969) for non-MHD flow down an inclined plane.1405

Proceeding now with the second-order approximation1406

γ2 =
Re coth(Ha/2) sech3(Ha)(2Ha(2 + cosh(2Ha)) −3 sinh(2Ha))

Ha2(cosh(Ha) − 1)

− 8Ga sinh2(Ha/2)(Ha − tanh(Ha))

Ha3Re(cosh(Ha)−1)
(A 23)

is the leading-order coefficient for γ with non-zero real part, governing the

Q5

1407
modal stability in the limit α ↘ 0. In particular, setting γ2 equal to zero and1408

solving for Re leads to (4.1a), quoted in the main text for the Reynolds number1409

Reb at the bifurcation point (Reb, 0). That is γ2 is negative for 0 <Re <Reb1410

but becomes positive for all Re > Reb. For weak magnetic fields Reb/Ga1/2 =1411

(5/8)1/2 + 191/(168 × 101/2)Ha2 + O(Ha4) grows quadratically with Ha , but when1412

the Hartmann number is large, Reb/Ga1/2 ∼ exp(Ha)/Ha1/2 increases exponentially.1413

Moreover, since γ1 is independent of Re, the phase velocity Cb at the bifurcation point1414

is equal to the zeroth-order phase velocity C0, in accordance with (4.1b). We remark1415

that the result Reb = (5Ga/8)1/2 for zero magnetic field strength is consistent with (38)1416

in the paper by Yih (1963), under the proviso that Re is replaced by Re ′ := 2Re/3 (Yih1417

chooses the mean steady-state velocity as the characteristic velocity for reduction to1418

non-dimensional form), and the inclination angle θ is substituted for Ga using (2.41).1419

Likewise, (4.1a) is in agreement with the instability criteria by Hsieh (1965), Gupta1420

& Rai (1968) and Korsunsky (1999). (Note, however, the numerical results in figure 61421

and table 3, which indicate that critical Reynolds number Rec is less than Reb.)1422

In order to assess the relative importance of the formation of the Hartmann velocity1423

profile versus the Lorentz force in the behaviour of Reb and Cb, we have carried out1424

similar large-wavelength calculations for (physically unrealistic) problems with (i) the1425

Hartmann velocity profile but no Lorentz force (i.e. Ha set to zero in (A 1)–(A 4))1426

and (ii) the Lorentz force included but the velocity profile set to the U (z) = 1 − z21427
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Poiseuille solution. The results for the perturbation-expansion coefficients for the1428

complex growth rate γ are1429

iγ1 = 1 + (Ha/2)2/ sinh2(Ha/2), (A 24a)

γ2 =− Ga

3Re
+

Re(432−24Ha2−22Ha4 + 5Ha6 − 432 cosh(Ha) + 240Ha sinh(Ha))

192Ha2 sinh4(Ha/2)
(A 24b)

and1430

iγ1 = 1 + 2(1 − sech(Ha))/Ha2, (A 25a)

γ2 = −Ga(Ha − tanh(Ha))/(ReHa3) + Re(72 + 12 sech2(Ha)(4 + Ha tanh(Ha))

− sech(Ha)(3(40 + 9Ha2) + Ha(2Ha2 − 3) tanh(Ha)))/(6Ha6), (A 25b)

respectively for cases (i) and (ii). As above, the phase velocity Cb = C0 = −iγ1 at the1431

bifurcation point follows directly from the first-order coefficients, while setting (A 24b)1432

and (A 25b) to zero and solving for Re leads to the expressions1433

Reb =
4HaGa1/2(cosh(Ha) − 1)

((18 + 5Ha2)(24 − 8Ha2 + Ha4) − 432 cosh(Ha) + 240Ha sinh(Ha))1/2

(A 26)

and1434

Reb = 2Ha(3Ga cosh(Ha)(Ha cosh(Ha) − sinh(Ha)))1/2

× (−3(40 + 9Ha2 + (40 + 9Ha2) cosh(2Ha) − 12 cosh(3Ha) − 8Ha sinh(Ha))

+ cosh(Ha)(204 + 2Ha(3 − 2Ha2) sinh(Ha)))−1/2, (A 27)

for the position of the bifurcation point on the α = 0 axis. These two types of test1435

problems have different strong-field behaviour, with1436

Reb ∼ Ga1/2(Ha/15)1/2 exp(Ha/2), Cb − 1 ∼ (Ha/2)2 exp(−Ha), γ2 ∼ −Ga/3Re
(A 28a–c)

and1437

Reb ∼ Ga1/2Ha2/3, Cb − 1 ∼ 2/Ha2, γ2 ∼ −Ga/(ReHa2), (A 29a–c)

respectively, for Ha � 1.1438

A.1.3. Fourth-order analysis for non-MHD flows1439

The existence of a bifurcation point (Reb, 0) on the neutral-stability curve1440

Im(c(Re, α)) = 0 provides a lower bound for the critical Reynolds number Rec,1441

but it is not necessarily true that Reb and Rec coincide. Here, by extending the1442

perturbative series to fourth order in α we determine that for sufficiently large Galilei1443

numbers the critical Reynolds number is in fact smaller than Reb. The objective of the1444

present calculation is to evaluate the gradient dRe/dα of the neutral-stability curve1445

with respect to the wavenumber at the bifurcation point; a negative dRe/dα|
Re=Reb

1446

would then imply that there exist unstable modes with Re < Reb and α > 0 in the1447

neighbourhood of (Reb, 0).1448

Proceeding in a similar manner as in the preceding sections, we compute the1449

coefficients γ3 and γ4 in the expansion γ =
∑

n>0 γnα
n for the eigenvalue of the soft1450

mode. (We remark that this procedure would be very laborious if carried out by1451
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hand but can be implemented in a relatively straightforward manner using symbolic-1452

mathematics software.) As with γ1, the coefficient γ3 has vanishing real part, which1453

implies that Γ2(Re, α) + α2Γ4(Re, α) + O(α3) = 0 holds on the neutral-stability curve1454

(here Γk = Re(γk)). By differentiating the latter expression with respect to Re, the1455

relation dRe/dα = −2αΓ4/(dΓ2/dRe)+O(α2) follows, which, combined with the result1456

(dΓ2/dRe)|
Re=Reb

= 16/15 > 0 (obtained e.g. by taking the limit Ha ↘ 0 in (A 23) and1457

differentiating with respect to Re), implies in turn that the sign of dRe/dα|
Re=Reb

is1458

determined by the sign of Γ4|
Re=Reb

. In particular, Γ4|
Re=Reb

is found to obey1459

Γ4|
Re=Reb

= −1/(3Ca) + (Ga/10)1/2(K1Ga − K2) (A 30)

with K1 = 2/135,135 and K2 = 2581/560. From this we deduce that for any Ca > 01460

there exists a minimum Galilei number Gam such that Γ4|
Re=Reb

is positive for1461

Ga >Gam, and correspondingly (dRe/dα)|
Re=Reb

is negative.1462

A.2. Non-zero-Pm problems1463

The method described in § A.1.1 can be used to study the large-wavelength limit1464

of the coupled OS and induction equations (2.43), with the addition that apart from1465

the expansions for γ , û and â, we write b̂(z) = b0(z) + αb1(z) + α2b2(z) + O(α3) for1466

the magnetic field eigenfunction. Moreover, (A 1) is replaced by coupled differential1467

equations, which, in the special case with flow-normal external magnetic field, have1468

the form1469

D4un − Reγ0D
2un + HaPm−1/2D3bn = s(u)

n ,

D2bn − Rmγ0bn + HaPm1/2Dun = s(b)
n .

(A 31)

As in § A.1, we are interested in perturbation order n � 2, where s
(u)
0 = s

(b)
0 = 0 and1470

s
(u)
1 /Re := (γ1 + iU )D2u0 − i(D2U )u0 + i(D2Bx)b0 − iBxD

2b0,

s
(b)
1 /Rm := (γ1 + iU )b0 − iBxu0,

s
(u)
2 /Re := (γ1 + iU )D2u1 − i(D2U )u1 + i(D2Bx)b1 − iBxD

2b1

(γ2 + 2Re−1)D2u0 − γ0u0,

s
(b)
2 /Rm := (γ1 + iU )b0 − iBxu1 + (γ2 + Rm−1)b0.

(A 32)

Among the boundary conditions, which are now seven, the no-slip, shear-stress and1471

kinematic conditions, respectively (2.48a–c), have the same expansions as (A 3 a, b, d),1472

but the boundary condition for the normal stress (2.48d) now yields1473

D3un(0) − Reγ0Dun(0) + HaPm−1/2Dbn(0) = S (4)
n , (A 33)

where S
(4)
0 = 0 and1474

S
(4)
1 /Re := (γ1 − iU (0))Du0(0) − i(DU (0))u0(0) + i(DBx(0))b0(0),

S
(4)
2 /Re := (γ1 + iU (0))Du1(0) − i(DU (0))u1(0) + i(DBx(0))(0)b1(0)

+ (3Re−1 + γ2 )Du0(0) + GaRe−2a0 + HaPmRe−1b0(0).

(A 34)

In problems with an insulating wall, the magnetic field boundary conditions (2.50)1475

lead in addition to1476

Dbn(−1) = S(6)
n and Dbn(0) = S(7)

n , (A 35a, b)
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respectively, where S
(6)
0 = S

(7)
0 = 0 and, for n ∈ {1, 2}, S(6)

n := bn−1(−1) and S(7)
n :=1477

iDBx(0)an−1 − bn−1(0). When the wall is perfectly conducting, the boundary condition1478

at z = −1 is replaced with bn(−1) = 0, in accordance with (2.51).1479

Following an analogous approach as in (A 5), we express the general solution1480

to (A 31) at order n as1481

(un, bn) =

5∑
i=0

Kni

(
u

(h)
i , b

(h)
i

)
+

(
u(p)

n , b(p)
n

)
, (A 36)

where {(u(h)
i , b

(h)
i )}5

i=0 are six linearly independent solutions to the homogeneous parts1482

of (A 31) and (u(p)
n , b(p)

n ) are particular solutions dependent on the source terms1483

(s(u)
n , s(b)

n ). Due to the high order of the differential equations involved, instead of1484

seeking expressions for (u(h)
i , b

(h)
i ) for arbitrary γ0, we shall set γ0 = 0 from the outset,1485

which is the solution of interest for large-wavelength instabilities. We will verify1486

subsequently that the resulting matrix A0 (the Pm > 0 analogue of (A 13)) possesses1487

a non-trivial nullspace. Choosing then1488 (
u

(h)
0 (z), b(h)

0 (z)
)

:= (1, 0),
(
u

(h)
1 (z), b(h)

1 (z)
)

:= (z, −HaPm1/2z2/2),(
u

(h)
2 (z), b(h)

2 (z)
)

:=
(
(cosh(Ha z) − 1)/Ha2, −Pm1/2(sinh(Ha z) − Ha z)/Ha2

)
,(

u
(h)
3 (z), b(h)

3 (z)
)

:=

(
sinh(Ha z) − Ha z

Ha3
, −Pm1/2 cosh(Ha z) − 1 − (Ha z)2/2

Ha3

)
,(

u
(h)
4 (z), b(h)

4 (z)
)

:= (0, 1),
(
u

(h)
5 (z), b(h)

5 (z)
)

:= (0, z)
(A 37)

as a set of linearly independent solutions to the homogeneous part of (A 31), valid for1489

γ0 = 0, and substituting (u0, b0) =
∑5

i=0 K0i(u
(h)
i , b

(h)
i ) into the zeroth-order boundary1490

conditions leads to the homogeneous algebraic equations A0w0 = 0, where w0 :=1491

(K00, . . . , K05, a0)
T is a seven-element column vector and A0 is a 7 × 7 matrix. In1492

problems with an insulating wall, A0 is given by1493

A0 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 (cosh(Ha) − 1)/Ha2 (Ha − sinh(Ha))/Ha3 0 0 0

0 1 − sinh(Ha)/Ha (cosh(Ha) − 1)/Ha2 0 0 0

0 0 1 0 0 0 0

0 −Ha2 0 1 0 0 0

1 0 0 0 0 0 0

0 HaPm1/2 −Pm1/2(cosh(Ha) − 1)/Ha (sinh(Ha) − Ha)/Ha2 0 1 0

0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A 38)

where rows 1–7 respectively result from (A 3a, b), (A 33), (A 35a, b) and (A 3d). In1494

conducting-wall problems, A0 has the same form as above but with the sixth row,1495

originating from the wall boundary condition for b̂, replaced by1496

(A6,j ) =(
0, −HaPm1/2

2
, Pm1/2 sinh(Ha) − Ha

Ha2
, Pm1/2 2 + Ha2 − 2 cosh(Ha)

2Ha3
, 1, −1, 0

)
.

(A 39)
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The presence of all-zero columns in (A 38), as well as in the matrix resulting1497

from (A 38) with the substitution (A 39), confirms our earlier assertion that setting1498

γ0 equal to zero endows A0 with a non-trivial nullspace. In the insulating-wall1499

case that nullspace has dimension q0 := 2 and is spanned by the column vectors1500

ξ 1 := (0, 0, 0, 0, 0, 0, 1)T and ξ 2 := (0, 0, 0, 0, 1, 0, 0)T, respectively corresponding to a1501

free-surface displacement with zero velocity and magnetic field perturbations (as in1502

inductionless problems) and a uniform flow-normal magnetic field perturbation with1503

no change in either û or â. In problems with a perfectly conducting wall the latter1504

option is not available, since the magnetic field must vanish at the wall; here ker(A0)1505

is one-dimensional and spanned by ξ 1.1506

According to the discussion in § A.1.1, the two-dimensionality of ker(A0) implies1507

that in insulating-wall problems there exist up to two solutions for the first-order1508

expansion coefficient γ1, and carrying out the procedure outlined in that section1509

establishes that this is indeed the case. However, unlike inductionless problems, the1510

resulting expressions for γ1, which we denote by γ
(F )
1 and γ

(M)
1 , both possess negative1511

real parts for all Ha > 0. Therefore, when Pm is non-zero all unstable inductionless1512

modes acquire negative growth rate for sufficiently small α > 0, and the α = 0 axis is1513

no longer part of the neutral-stability curve Im(c) = 0.1514

Explicit expressions for γ
(F )
1 and γ

(M)
1 in terms of {Re, Ha, Pm} are complicated1515

and not particularly illuminating. However, their salient properties are revealed by1516

means of the series approximations1517

γ
(F )
1 = − 32Ha2Rm

15(9 + 4Rm2)
− i

(
2 − 13Ha2

90
− 16Ha2

5(9 + 4Rm2)

)
+ O(Ha4), (A 40a)

γ
(M)
1 = −2(3 + Ha2)

3Rm
+

32Ha2Rm

15(9 + 4Rm2)
− i

(
2

3
+ Ha2

(
1

90
+

16

5(9 + 4Rm2)

))
+O(Ha4)

(A 40b)

and1518

γ
(F )
1 = −Rm((cosh(4Ha) − 1 − 16Ha2 − 8Ha2 cosh(2Ha)) tanh(Ha) + 16Ha3)

64Ha3 sinh4(Ha/2) cosh2(Ha)

− i(1 + sech(Ha)) + O(Pm2), (A 41a)

γ
(M)
1 = −2Ha coth(Ha)

Rm
− i

cosh(Ha) − 2Ha csch(Ha) + sech(Ha)

cosh(Ha) − 1
+ O(Pm),

(A 41b)

respectively valid for small Ha and Pm . Inspecting (A 40) and (A 41), we deduce that1519

among the two solutions γ
(M)
1 is singular in the inductionless limit Pm ↘ 0, whereas1520

γ
(F )
1 tends to the result (A 22) for the first-order expansion coefficient for mode F1521

obtained in § A.1.2. For small Hartmann numbers the mode associated with γ
(M)
1 ,1522

referred to in § 4.3.1 as the magnetic mode, has negative growth rate and propagates1523

with phase velocity close to the 〈U〉 = 2/3 mean value of the Poiseuille profile. On the1524

other hand, mode F becomes neutral as Ha ↘ 0 (that is Re(γ (F )
1 ) ↗ 0) and propagates1525

at twice the steady-state velocity at the free surface irrespective of the value of the1526

magnetic Prandtl number. A similar procedure applied for problems with U = B = 0,1527

but Ha � 0, yields1528

γ
(F )
1 = 0, γ

(M)
1 = −2Ha coth(Ha)/Rm, (A 42)
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indicating that the magnetic mode is stable even in the absence of a steady-state flow,1529

whereas mode F becomes neutral to first order in α.1530

Because in insulating-wall problems Re(γ (F )
1 ) is negative for all Pm > 0 and Ha > 0,1531

the second-order approximation in α is not relevant for the stability of mode F1532

in the limit α ↘ 0, and for this reason we will not pursue it here. On the other hand,1533

the analysis for problems with a perfectly conducting wall, where, as discussed above,1534

ker(A0) is one-dimensional, leads to the result that as in inductionless problems, the1535

leading-order coefficient in the expansion for γ with non-zero real part is γ2, which,1536

in addition to Re, Ga and Ha , now depends on Pm . Solving for Re in the equation1537

γ2(Re, Ga, Ha, Pm) = 0, we obtain1538

Reb = 8 cosh(Ha) sinh(Ha/2)2Ga1/2(Ha cosh(Ha) − sinh(Ha))1/2

/(Ha(2(3 + (7 + 17Ha2)Pm) cosh(Ha) + ((13Ha2 − 12)Pm − 6) cosh(3Ha)

+ (Ha2 − 1)Pm cosh(5Ha) + Ha(2(6 + 7Pm) sinh(Ha) + (4 + 5Pm) sinh(3Ha)

− Pm sinh(5Ha))))1/2 (A 43)

for the Reynolds number Reb at the bifurcation point of the neutral-stability curve,1539

which in this case includes the α = 0 axis. Moreover, the first-order coefficient γ1 and,1540

in turn, the phase velocity Cb at the bifurcation point are found to be given by the1541

same expressions as in inductionless problems, namely (A 22) and (4.1b), respectively.1542

For small Hartmann numbers and provided that Pm is also small, Reb/Ga1/2 =1543

(5/8)1/2+(191−25Pm)Ha2/(168×101/2)+O(Ha4) increases quadratically with Ha , but1544

for strong magnetic fields Reb ∼ (Ga/Pm)1/2Ha−1 becomes inversely proportional to1545

the Hartmann number (cf. the exponentially increasing Reb in inductionless problems).1546

REFERENCES1547

Abdou, M. A. et al. 2001 On the exploration of innovative concepts for fusion chamber technology. Q61548
Fusion Engng Design 54, 181.1549

Alexakis, A. et al. 2004 On heavy element enrichment in classical novae. Astrophys. J. 602, 931.1550

Alpher, R. A., Hurwitz, H., Jr., Johnson, R. H. & White, D. R. 1960 Some studies of free-surface1551
mercury magnetohydrodynamics. Rev. Mod. Phys. 32 (4), 758.1552

Balbus, S. A. & Henri, P. 2007 On the magnetic Prandtl number behaviour of accretion disks.1553
Astrophys. J. 674, 408.1554

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics . Cambridge University Press.1555

Betchov, R. & Criminale, O. 1967 Stability of Parallel Flows . Academic.1556

Bildsten, L. & Cutler, C. 1995 Nonradial oscillations in neutron star oceans: a source of quasi-1557
periodic X-ray oscillations. Astrophys. J. 449, 800.1558

Bühler, L. 2007 Liquid metal magnetohydrodynamics for fusion blankets. In Magnetohydrodynamics1559
– Historical Evolution and Trends: Fluid Mechanics and its Applications (ed. S. Molokov,1560
R. Moreau & H. K. Moffatt), vol. 80, p. 171. Springer.1561

De Bruin, G. J. 1974 Stability of a layer of liquid flowing down an inclined plane. J. Engng Math.1562
8 (3), 259.1563

Dongarra, J. J., Straughan, B. & Walker, D. W. 1996 Chebyshev τ–QZ algorithm methods for1564
calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399.1565

Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability , 2nd edn. Cambridge University Press.1566

Floryan, J. M., Davis, S. H. & Kelly, R. E. 1987 Instabilities of a liquid film flowing down a1567
slightly inclined plane. Phys. Fluids 30 (4), 983.1568

Giannakis, D., Fischer, P. F. & Rosner, R. 2009 A spectral Galerkin method for the coupled1569
Orr–Sommerfeld and induction equations for free-surface MHD. J. Comput. Phys. 228, 1188.1570
DOI:10.1016/j.jcp.2008.10.016.1571

Gordeev, Yu. N. & Murzenko, V. V. 1990 Wave flows of a conducting viscous fluid film in a1572
transverse magnetic field. Appl. Math. Theor. Phys. 3, 96.1573



60 D. Giannakis, R. Rosner and P. F. Fischer

Grosch, C. E. & Salwen, H. 1964 The stability of steady and time-dependent plane Poiseuille flow.1574
J. Fluid Mech. 18, 350.1575

Gupta, A. S. & Rai, L. 1968 Hydromagnetic stability of a liquid film flowing down an inclined1576
conducting plane. J. Phys. Soc. Jpn 24 (3), 626.1577

Ho, L. W. 1989 A Legendre spectral element method for simulation of incompressible unsteady1578
viscous free-surface flows. PhD thesis, Massachusetts Institute of Technology, Cambridge,1579
MA.1580

Hsieh, D. Y. 1965 Stability of a conducting fluid flowing down an inclined plane in a magnetic1581
field. Phys. Fluids 8 (10), 1785.1582

Hunt, J. C. R. 1966 On the stability of parallel flows with parallel magnetic fields. Proc. R. Soc. A1583
293 (1434), 342.1584

Ji, H., Fox, W., Pace, D. & Rappaport, H. L. 2005 Study of magnetohydrodynamic surface waves1585
on liquid gallium. Phys. Plasmas 12, 012102.1586

Kelly, R. E., Goussis, D. A., Lin, S. P. & Hsu, F. K. 1989 The mechanism for surface wave1587
instability in film flow down an inclined plane. Phys. Fluids A 1, 819.1588

Kirchner, N. P. 2000 Computational aspects of the spectral Galerkin FEM for the Orr–Sommerfeld1589
equation. Intl J. Numer. Meth. Fluids 32, 119.1590

Korsunsky, S. 1999 Long waves on a thin layer of conducting fluid flowing down an inclined plane1591
in an electromagnetic field. Eur. J. Mech. B 18 (2), 295.1592

Ladikov, Yu. P. 1966 Flow stability of a conducting liquid flowing down an inclined plane in the1593
presence of a magnetic field. Fluid Dyn. 1 (1), 1.1594

Lam, T. T. & Bayazitoglu, Y. 1986 Solution to the Orr–Sommerfeld equation for liquid film flowing1595
down an inclined plane: an optimal approach. Intl J. Numer. Meth. Fluids 6, 883.1596

Lin, C. C. 1944 On the stability of two-dimensional parallel flows. Proc. Natl Acad. Sci. USA 30,1597
316.1598

Lin, S. P. 1967 Instability of a liquid film flowing down an inclined plane. Phys. Fluids 10 (2), 308.1599

Lingwood, R. J. & Alboussiere, T. 1999 On the stability of the Hartmann layer. Phys. Fluids1600
11 (8), 2058.1601

Lock, R. C. 1955 The stability of the flow of an electrically conducting fluid between parallel planes1602
under a transverse magnetic field. Proc. R. Soc. Lond. A 233, 1192.1603

Lu, P. C. & Sarma, G. S. R. 1967 Magnetohydrodynamic gravity–capillary waves in a liquid film.1604
Phys. Fluids 10 (11), 2339.1605

Mack, L. M. 1976 A numerical study of the temporal eigenvalue spectrum of the Blasius boundary1606
layer. J. Fluid Mech. 73 (3), 497.1607

Melenk, J. M., Kirchner, N. P. & Schwab, C. 2000 Spectral Galerkin discretization for1608
hydrodynamic stability problems. Computing 65, 97.1609

Mukhopadhyay, A., Dandapat, B. S. & Mukhopadhyay, A. 2008 Stability of conducting liquid1610
flowing down an inclined plane at moderate Reynolds number in the presence of constant1611
electromagnetic field. Intl J. Non-Linear Mech. 43, 632.1612

Müller, U. & Bühler, L. 2001 Magnetofluiddynamics in Channels and Containers . Springer.1613

Nornberg, M. D., Ji, H., Peterson, J. L. & Rhoads, J. R. 2008 A liquid metal flume for free1614
surface magnetohydrodynamic experiments. Rev. Sci. Instrum. 79, 094501.1615

Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50,1616
689.1617

Potter, M. C. & Kutchey, J. A. 1973 Stability of plane Hartmann flow subject to a transverse1618
magnetic field. Phys. Fluids 16 (11), 1848.1619
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